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1. Objective
&

Background



BacKground: geotagged photos

= The number of geo-tagged photos on
the Web grows rapidlv: Flickr, panoramio

= Flickr has 100.000.000 geotagged photos.

(Feb. 2009)

flickr
A “geo-tag”
represents the
5, coordinates
€5 i 5 o o (Iatitude,l_ongitude)
AAAAAA - of a location where
a photo are taken.

AAAAAAAAA



Distributions is different




Objective

Examine the relation between distributions
of visual features and geo-locations
regarding many concepts (words)

1. Entropy-based measure of visual features

2. Entropy-based measure of geo-locations

3. Analysis the relation between both
distributions

s For 230 nouns and 100 adjectives



2. Related Work



Image region entropy [Yanaiet al. 05]

m A measure of ‘visualness  of words (concepts)

= Represent the property of the distribution of
image features

Biased / uneven: - Random/uniform:
low entropy - high entropy
having “visualness” o, o not having “visualness’

‘Low entropy means the concept has visual property,
"High entropy  means the concept has less visual
property.



Image region entropy [Yanaiet al. 05]

m Entropy-based analysis on ‘visualness’
for 150 adjectives using Web images
m Use Color, texture and shapes of regions

m Select relevant regions 1o the given concepts
and calculate entropy with only relevant ones
Translation model-based

Color names +ends +o have low enfropv
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Concept analysis [Koskela et al. 07]

s Entropy-based analysis for 280 LSCOM concepts.
s Including compound words such as “Asian people
m Use color, edge and textures as image features
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IM2GPS [Hayes et al. 09]

m Estimate the probability distribution over the
world by nearest neighbor search for large-
scale geotagged image DB,

= This work suggests there exists Fhe relation
between visual features and geo-locations.



In this paper

m Entropy-based analysis of the relation
between visual features and geo-locations

which was inspired by the following works:
m Entropy-based visual feature analysis [Yanai

et al. 05]

s Comparison between visual entropy and
frequency [KosKela et al. 07]

s Estimation of geo-location probability
by only visual features [Hayes et al. 08]

No worKk having the same objective so far



3. Methods



Overview (1): image entropy

m Follow ‘image region entropy’ [Yanaiet al. 05]
m Use bag-of -features instead of color. texture

PLONERLS B

codebook

m Use mi-SVM 1o select relevant regions

’ ) For excluding
Q background
and noise regions

= Model the distribution of BoF vectors with
pLSA instead of GMM

m Calculate entropy based on pLSA vectors



Overview(2): geo-location entropy

m Collect geotagged images from Flickr

via Flickr API _
flickr

m Calculate geo-location entropy based on
region grids of the world map
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Method: compute vis-entropy

m Collect geotagged images associated with a given
word "X  from Flickr using Flickr API

Carry out region segmentation (JSEG)
Extract a BoF vector from each region

Select relevant regions 1o the given word by mi-SVM

Estimate the distribution of the BoF vectors of the
selected with pLSA

m Calculate entropy of the estimeted distribution
with respect 1o the generic base distribution,

Entropy : how much the distribution of region features is biased
compared to the generic distribution of region features




Method: prepare generic model

m Calculate the entropy of the "X regions
with respect 1o the generic base
distribution

= Build a generic distribution model of the
region features of randomly collected Web

images in advance
m Use pLSA 1o model distributions

- Probabilistic Latent Semantic Analysis [Hofmann 99]

P(w,d) =P(d)2_ p(w]|z)

i %

: .
T SAEEEY - -




[image representation (1)] 19
Region segmentaion by JSEG

= Divide each image into regions by JSEG
(8 regions on the average)

m Extract a BoF vector from each region

iy iy

‘ H Bag-of-features
n ﬂanL (BoF) histograms
| ”ﬂ-uﬂ[, (1000-dim)
“ .j”ﬂ_u”n[,
‘n n”ﬂ-ﬂﬂnﬂ




[image representation (2)] 20
Region-based bag-of-features

= Represent an image as sets of features
1. Sample 2000 points randomly

2. Represent local patterns around sampled
points with SIFT descriptor

3. Vector-quantize SIFT vectors based on
pre-computed visual words (codebook(300))

008 » frequency H H
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codewords (visual words)




How to obtain visual words :

m Extract many SIFT vectors from positive and
negative training samples

Perform k-means clustering
center of clusters are “visual words”.

Visual words |

tr 2= el
& | SIFT vectors “Visual words” are
25 representative local patterns.



http://jatatours.intafrica.com/parks.html
http://www1.plala.or.jp/naopy/africa01/lion_1.htm
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Multiple Instance Setting

m Positive bags / Negative bags

@ Dbositive ins,
(foreground)

Py negative ins,
(background)
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Positive instances of flower negative regions,

pseudo-training images random images
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mi-SVM  [Andrew et al. NIPS 03]

= Apply soft-margin SVM iteratively

m Training - classifying = training -
classifying — ««+--- (repeat 5 times)

/

During the iteration, the hyper-
plane is approaching the optimal

plane to discriminate positive
“C instances from negative ones,

® positive ins.

O
(foreground)
Py negative ins,

(background)



Distribution modeling with the 25

PLSA topic mixture o~ o

P(zld )\Z/P( wiz )
P(w,d)=P(d))_ p(w|2)P(z|d)
w: visual words, d: regions, z: topic

@ Apply PLSA for all the regions of all the
random images in advance

—> Obtain P(w|2) and fix it (based distribution)

@ Estimate P(z | d) for each regions with fixed
P(w | 2) using fold-in heuristic [Hofmann 09]



mountain

= A region o
"Mountain’
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W set the topic
number as 300
In the experiment.
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Calculate image region entropy
m H(X): entropy of the given word X
H(X)=—) P(z|X)log, P(zx|X)

k
1
P(z]|X) = TZP(;:;: d¥)

m H(X) can be calculate
from each iteration of mi-SVM

= Regard the minimum H(X) during
5 iterations as the final entropy H(X)



Calculate geo-location entropy

1. Divide the world into 4 kinds of grids
with every 10 degrees by shifting 5
degrees in terms of both latitude and longitude

2. Build histograms regarding geotags of
the selected regions Fm———

3. Calc entropy Hyeo(X) Z bi log,, b;
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4 Experimental
results



Experiments

m Data

= 230 nouns and 100 adjectives
including various Kinds of words

m 500 geotagged photos at least/ each tag
from Flickr
(limiting 5 photos for each tag per user ID)

m After selecting relevant regions for each
tag, calculate the two entropy:
Image region entropy Huis(X)
Geo-location entropy Hgeo(X)

|
m Analyze relation between them



Results of selection of regions

sun




Results of selection of regions

orange




Image region entropy H.is(X) nouns
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Results on adjectives

« Adjectives are more abstract than nouns.
Their entropy tends to be high.

= The entropy of color adjectives are relatively
low among the adjectives,

m Since we do not use color features, selected
relevant regions are not correct,



Geo-entropy Hgeo(X)

Deutschland

(X) = 0.2602
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Geo-entropy Hqo(X) adjectives

medieval modern

(X) 3.4364 (X) 3.7864

990 geo

traditional underwater
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Visual entropy vs. geo-entropy [n ]
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Sun, rainbow, sky

* Nouns related to sky
— Image region entropy : low

— Geo-location entropy : high
They exists everywhere in the world,
and the apperances are similar,
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image region entropy



= Image region entropy: high B '
= Geo-location entropy :

Geotags are concentrated
10 specific regions.

Appearances are various.
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tulip

H(X)..=.5.7700..20th/230-in-ascending-order
Hypeo(X) = 4.2091 42th/230 in ascending order

- Variance of color did not reflect
on image region entropy.,

- Holland and England is main parts




dolphin
H(X)..=.7.1559..42th/230-in-descending-order
Heo(X) = 5.2981 25t/230 in descending order

- Most of dolphins are taken in sea
or aquarium

 In seaside areas
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Visual entropy vs. geo-entropy [a.]
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Conclusions

Examine the relation between distributions
of visual features and geo-locations
regarding many concepts (words)

1. Entropy-based measure of visual features

2. Entropy-based measure of geo-locations

3. Analysis the relation between both
distributions

s For 230 nouns and 100 adjectives



Thank you
for vyour attention!
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