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Abstract

In this paper, we propose an effective method to imple-
ment a system of large-scale visual recognition where the
number of classes is more than 1000 on mobile devices.
Because the size of memory and storage on mobile devices
such as smartphones is limited, the size of image recogni-
tion application should be as small as possible. To save
the required memory of mobile visual recognition, we pro-
posed a scalar-based classifier weight compression method
before [0]. Although it is very simple and effective, it has
the drawback that the performance is degraded largely in
case of lower-bit representation. Then, in this paper, we
propose an improved method to make 2-bit and 1-bit rep-
resentation feasible, and make more comprehensive experi-
ments including more large-scale 10k image classification
with combination of the proposed improved scalar-based
compression method and product quantization.

1. Introduction

Due to the recent progress of smartphone technologies,
smartphones such as iPhone and Android phones have ob-
tained much computational power which is almost compa-
rable to consumer PCs. A quad-core CPU has lately become
common to many smartphones. Taking advantage of their
enhanced computation power, client-side image classifica-
tion applications have been developed such as Impala !, Jet-
pack Spotter > and FoodCam [5]. In mobile devices, the size
of required memory of an application should be as small as
possible, because the size of storage as well as the size of
memory are limited. In addition, if large-scale visual recog-
nition with small memory is made possible, it can be em-
bedded into various kinds of electronic devices such cars,
televisions and digital cameras, which helps make visual
recognition technology more practical.

In this paper, we propose an improvement method of

Thttp://www.euvt.eu/ (recently acquired by Qualcomm)
Zhttps://www.jetpac.com/spotter/ (recently acquired by Google)

theirs to make 2-bit and 1-bit representation practical, and
make more comprehensive experiments to show that the ef-
fectiveness of the proposed improved method is applicable
for more wide-ranging visual classification problems. We
will prove its effectiveness for more large-scale image clas-
sification on ImageNet 10k categories.

2. Related Work

In this section, we describe some related works on com-
pression of Fisher Vector and mobile image recognition.

One of the reasons on high performance of FV com-
pared to low dimensional features such as bag-of-features
is its high dimensionality, which enhances its discrimina-
tive power. However, as a negative point on high dimen-
sionality, it requires a large amount of memory and storage
to store not only feature vectors but also weight vectors of
trained linear classifiers. Therefore, in case of large-scale
image classification where the number of training samples
is large, to train a classifier with FV, batch learning of clas-
sifiers such as standard SVM is sometimes impossible, be-
cause it requires too much memory to store all the training
samples. Instead, online learning is commonly used, since
it updates training parameters one by one for each of the
training samples and requires only one sample at a time.
Even in case of using an online learning method, Sanchez et
al. [8] compressed feature vectors coded by FV with Prod-
uct Quantization (PQ) [3] in training time to store a large
number of feature vectors on memory at once. Zhang et
al. [9] proposed mutual information based element selection
of FV to reduce the dimension of FV and combined it with
FV binarization proposed by Perronninn et al. [7]. How-
ever, they made experiments on only 262,144-d FV which
is extremely high dimensional, and its effectives for lower
dimensional FV (e.g. several thousands dim.) is unclear. In
this way, compression of FV-coded feature vectors in train-
ing time for saving required memory has addressed so far.

On the other hand, memory saving for classification time
which is our objective in this paper has not been explored
before for image classification as long as we know except



in our previous work [6].

3. Overview of the Mobile Image Classification
Pipeline

In this work, we adopt the framework with Fisher Vec-
tor and linear classifier for mobile large-scale visual recog-
nition which is more widely applicable to various kinds
of image classification problems in mobile environments
than Deep Convolutional Neural Network (DCNN) at the
present. In this section, we describe the pipeline on mobile
visual recognition which is following [6].

Firstly, we extract RootHOG patches and Color patches
in a dense grid sampling manner. Then, we apply PCA
to all the extracted local features, and encode them into
Fisher Vectors. Next, we evaluate linear classifiers in the
one-vs-rest way by calculating dot-product FVs and quan-
tized weights. Finally we output the top-N categories in
terms of the descending order of evaluation scores of all
the linear classifiers. The key point is using quantization of
high-dimensional linear classifier weights for reducing the
amount of required memory. In the experiments, it turns out
that this reduction hardly affects classification accuracy.

3.1. Linear Classifier

As a method for mobile large-scale image classification,
we adopt linear classifiers with one-vs-rest strategy. Akata
et al. [1] examined various learning methods for a large-
scale visual recognition including 10k ImageNet dataset.
They claimed that the one-vs-rest strategy with online learn-
ing is recommended even for 10k-class classification as well
as 1000-class classification.

In large-scale image classification, online learning is
commonly used instead of batch learning. As an online
learning method of linear classifiers, we use AROW [2]
which is robust to noisy labels. This characteristics is suit-
able for a large-scale data, especially data gathered from the
Web such as image data on ImageNet.

Classification with a weight vector estimated by AROW
is just a calculation of dot-product between a FV-coded fea-
ture vector of the given image, x, and the estimated weight,
w, regarding each of all the classes as follows.

S=w-x (D)

where S is an evaluation value of a linear classifier. w is the
target we would like to compress in this work. Finally, we
obtain the top-k categories in terms of the descending order
of the evaluation scores of all the linear classifiers, since
we adopt one-vs-rest strategy for multi-class classification.
Note that although Eq.1 assume a linear classifier with only
a weight vector, it is applicable for linear SVM, S = w -
x + b, which has bias b by regarding [w; b] as a weight and
[x; 1] as a feature vector.

assignment of weight values

0.08
u = —0.0003
0.07 o =0.1210
0.06
0.05 a =220
: = 0.2662
0.04
0.03
0.02
001 00 01| 10 11
0
R S T T A B B B T B B S A B B B
© 9 3393 3359 S 606 oS S S oo

Figure 1. The distribution of all the elements of the weight vec-
tors trained by AROW with the ILSVRC2012 dataset for FV of
RootHOG patches and FV of Color patches in case of 64 GMM.

4. Quantization of Weight Vectors and its Im-
provement

Large-scale image classification with one-vs-rest linear
classifiers and high dimensional Fisher Vector requires a
large number of classifier weights. It is a problem for im-
plementation on a mobile device. To save the amount of the
required memory, we can reduce the dimension of FV with
PCA or other projection methods. However, it will bring se-
vere performance reduction [8]. To keep high classification
performance, dimension reduction should be avoided. Note
that mutual information based element selection of FV pro-
posed by Zhang et al. [9] might have potential to reduce the
dimension without severe performance loss, and to explore
the combination of this work and their work is for future
work.

Instead of dimension reduction of feature vectors, in
this paper, we adopt a scalar-based quantization method for
weight vectors of linear classifiers we proposed before [6].
In the method, we quantize each element of weight vectors
without their dimension reduction. Because the method is
based on scalar quantization, it has a good characteristic that
we do not need to reconstruct quantized vectors into orig-
inal ones when evaluating linear classifiers. This is differ-
ent from the case of using generic compression methods,
vector-quantization or product quantization (PQ) [3], which
needs reconstruction of original vectors for evaluating clas-
sifiers.

In general, the element values of weight vectors of linear
classifiers are distributed around zero. Figure 1 shows the
distribution of weight element values estimated by AROW
with the ILSVRC2012 dataset for both FV of Color patches
and FV of RootHOG patches over 1000 classes in case of
64-GMM. The average and standard deviation of classifier
weight elements are —(0.0003 % 0.1210. The shape of the
distribution is exactly like a Gaussian distribution.

Based on this observation, as a first step, in this paper, we
propose to restrict the range of an element value w; within



[—a, «) after subtracting w,,, Where o is a positive con-
stant value and w4 is the average of all of the element
values of all of the trained weight vectors, w;(i = 1..C),
of C' one-vs-rest linear classifiers. The important thing is
that o and wg,4 should be common through all of the lin-
ear classifiers in the one-vs-rest strategy. This enables us
to avoid uncompression of the compressed weights in the
evaluation time. It is represented by the following rules:

wz/' = (w; — wavg)/a ()
0.999999 (w; > 1) (3a)
wy = w (-l<wi<) (3b)
-1 (w] < —1) 3c)

In the previous method [6], we restricted the fixed range
within [—1, 1) and did not subtract the average value, which
means it is assumed that the distribution and the average
of the elements of the linear classifier weight vectors are
almost the unchanged and zero. However, this caused the
large performance degradation on lower bit representation,
since this assumption is not always true.

Next, we quantize w] into n-bit representation with the
following equation:

w;// _ Lw;/ % Qn—l + anlJ’ (4)
where | x| is a floor function representing a maximum inte-
ger value which is not more than z. With this conversion,
wy’ is represented as an integer value within [0,2" — 1],
which can be expressed in n bits. We use w}” (i = 1..D)
represented by a n-bit integer value as an element value of
quantized weight vectors, where D represents the dimen-
sion size of a feature vector.

Regarding a constant value to decide the value range, a,
in the experiments we decide o based on the standard devi-
ation o of the distribution of weight values of all the linear
classifiers for one-vs-rest classification. From the prelimi-
nary experiments, we found « should be set as a value from
20 to 3o. In the experiments, we selected the best value of
a from 20 to 30 by using validation data in the ILSVRC
dataset. For the ILSVRC 1000-class data we set « as 2.20,
while for the 100-class food image data we set o as 2.50.

Figure 1 shows an example of 2-bit quantization where
the value range is divided into 4 2-bit states, 00, 01, 10 and
11 by setting the boundaries as —2.20/2(= —0.1331), 0
and 2.20 /2, respectively.

To classify images in one-vs-rest manner, only relative
descending order of the output values of the classifiers for
the same Fisher Vector is important. Therefore, if we use
the same « and wg,,4 for compression of all the weights of
the one-vs-rest linear classifiers, we can omit to reconstruct
original values. It is enough for classification to compute
a dot-product between a scalar-quantized weight vector and

a FV-coded feature vector as represented in Eq.1. Even re-
construction of the sign of the unsigned quantized values is
not needed, because the constant values added to make the
values unsigned can be ignored for relative comparison of
the output values of the linear classifiers in the one-vs-rest
classification. This prevents the processing time from in-
creasing at the classification time on a smartphone. In fact,
in case of 2-bit quantization shown in Figure 1, we assign
just four kinds of the integer values, 0(00), 1(01), 2(10) and
3(11), to each of the value ranges as quantized values, re-
spectively. In the experiments, surprisingly, no prominent
performance loss was observed compared to the result with
original floating value weights.

5. Experiments

In the experiments, firstly we used the ILSVRC2012
1000-class image dataset [4] for performance evaluation
and evaluation of processing time on a smartphone, sec-
ondly we made experiments with ImageNet10k which con-
tains 10,184 categories in the Fall 2009 release of Ima-
geNet.

5.1. 1000-Class Large-Scale Classification
5.1.1 Experimental Setup

In the experiments, as a standard large-scale image dataset,
we use the ILSVRC2012 dataset [4] which consists of 1000
classes. Since our objective is classifying 1000 classes on a
smartphone in a practical speed (less than 1 second), we set
parameters by regarding required memory and recognition
speed as more important than performance.

First of all, we resize all the images so that the total
pixels of all the image is less than 50,000 with the aspect
ratio unchanged. Regarding local image features, we pre-
pare two kinds of features, Color-patch, and RootHOG-
patch, each of which represents color, and gradient, respec-
tively. We sample them densely in every 5 pixels with
two scales. Before being coded by Fisher Vector, they
are applied with PCA and converted into 32-dim vectors
in case of RootHOG-patch, and 24-dim vectors in case of
Color-patch. Although the dimension of feature vectors for
RootHOG-patch and Color-patch are not reduced by ap-
plying PCA, PCA is still important for whitening of fea-
ture vectors before FV coding. For FV coding, we use the
GMM with 64, 128, and 256 Gaussians (64-GMM, 128-
GMM, and 256-GMM in short) and Spatial Pyramid level
1 (I1x142x2). As results, the total dimensions of FV are
10240, 20480, and 40960 for FV of RootHOG patches
(RootHOG-FV) and 7680, 15360, and 30720 for FV of
Color patches (Color-FV), respectively.

In classification time we trained RootHoG-FV and
Color-FV independently, and we simply added two output



values of the linear classifiers on each class without any
weighting. For weight quantization, we set « as 2.2¢ which
was estimated using validation data in the ILSVRC dataset
as mentioned previously.

5.1.2 Evaluation on Weight Compression

We compare the experimental results with GMM-64,
GMM-128 and GMM-256 when varying the bits for weight
compression from 1 to 32. In case that the number of bits
is 32, we use the weight vectors represented by floating val-
ues, which means no compression.

Figure 2 shows the top-1 and top-5 classification rates
for GMM-64, GMM-128, GMM-256 and the results from
[6] which represented as “GMM-64(old)”. From 32 bits
to 4 bits, no prominent performance drops were observed.
The rate was degraded by less than 1 points in case of 4-
bit compression compared to the original floating weights
(32bit) for all GMM sizes. In case of 2-bit, the slight perfor-
mance drops were observed by 1.81%, 1.37% and 0.61% for
GMM-64, GMM-128 and GMM-256, respectively, regard-
ing the top-5 accuracy, while the large performance drops
are observed by 5.96% for GMM-64(old). This indicates
the performance loss is improved by 4.15% by the proposed
method in the paper. In cases of 1-bit, the performance
drops become prominent by more than abound 5 points for
GMM-64 and GMM-128, and 3.1% for GMM-256. How-
ever, we can see that “GMM-256 with 1-bit” outperformed
“GMM-128 with 2-bit”, in both cases of which the required
memory is the same. From these observation, performance
loss due to weight quantization becomes smaller, as the size
of the GMM becomes larger.

Then, we compare the classification performance for the
three cases where the amount of the required memory to
store the weight vectors is the same: “GMM-64 with 4-
bit”, “GMM-128 with 2-bit” and “GMM-256 with 1-bit (bi-
nary)“. The result is shown in Figure 3. Among the three
cases, “GMM-256 with 1-bit” was the best performance,
50.40%, and “GMM-128 with 2-bit” was almost compara-
ble to the best, 50.18%. This results indicate that the weight
vectors should be higher dimensional and lower-bit repre-
sentation, when the available memory is fixed. However,
for a smartphone implementation, we have to take into ac-
count processing time, especially, the time for Fisher Vector
coding which is expected to be proportional to the GMM
size. We will examine the relation between processing time
and FV dimensions later.

5.1.3 Recognition Time

Figure 4 shows the processing times for 1000-class classifi-
cation of one given image on Samsung Galaxy Note II in
case of “64-GMM with 2-bits”, “128-GMM with 2-bits”

—64 (Top-1)
0.6 | =64 (Top-5)

—128 (Top-1)
—-128 (Top-5)

256 (Top-1)
256 (Top-5)

—Top-1
old

—Top-5
Top-5

t
+0.0415

\QA

GMM 3 156 8 ot

64 |0.4869 0.4824 0.4824 0.4814 0.4688 0.4215 +0.0309
64(old) 0.4869 0.4869 0.4868 0.4788 0.4273 0.4215

128 05155 0.5155 0.5155 0.5112 0.5018 0.4657

256 | 0.5351 0.5351 0.5351 0.5344 0.5290 0.5040

o
wn

o
IN

o
w

2

o
N}

Classification Rate

=]

.1

32bit(float) 16bit’ S.bit' 4bit’ 2bit’ 1bit’
bit numbers
Figure 2. Top-1/Top-5 classification rates with GMM-64, GMM-
128, GMM-256 and GMM-64(old) [6] with n-bit compressed
weight vectors (n=1, 2, 4, 8, 16 and 32).

0.6

0.4869 0.4814 0.5018 05040
Beo  oes4 2 ==

4
n

I
IS

0.2834 0.2790 0.2975 0.2971
84 om0

—-Top-1 —-Top-5

o
w

Classification Rate

o
[

32(float), 64 4, 64 2,128 1,256
bit numbers, the size of GMM
Figure 3. Comparison of Top-5 classification rate with three cases
where the amount of the required memory to store the weight vec-
tors is the same. Note that the results of “32(float, no quantization),
GMM-64 is shown for reference.

and “256-GMM with 1-bit”. “64-GMM with 2bits” has
achieved the fastest time, 0.159 second. Although “256-
GMM with 1-bit” achieved the best performance as shown
in Figure 3, it was 3.7 times as slow as “GMM-64 with
2-bit”. Since the performance difference between “GMM-
128 with 2-bit” and “GMM-256 with 1-bit” is 0.22%, for
a mobile implementation “GMM-128 with 2-bit” is cur-
rently the appropriate choice for the 1000-class ILSVRC
dataset by taking account of the balance between accuracy
and speed. However, when the CPU computational speed
increases twice in the near future, ‘“256-GMM with 1-bit”
will become the better choice.

Basically the processing time consists of local feature ex-
traction, applying PCA, FV coding, and evaluation of linear
classifiers. The time for local feature extraction and com-
putation of PCA is independent of the GMM size, while
the processing time for FV coding and classifier evalua-
tion is proportional to the GMM size. The time differences
between GMM-64 and others are mostly caused by these
GMM-size-dependent steps.



Processing time on Galaxy S5
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Figure 4. Processing time for 1000-class classification for one im-
age on Samsung Galaxy S5 (2.6GHz, Quad-core, android 4.4.2).

5.2. More Large-Scale Dataset

We made experiments with ImageNet10k which contains
10,184 categories in the Fall 2009 release of ImageNet.
We use 3072-dim FV of Color patch and 4120-dim FV of
RootHOG with 128-GMM with no spatial pyramid as im-
age features.

In this experiments, we compared the results with 4
different settings which are no compression, the proposed
scalar-based compression with 2-bit, Product Quantiza-
tion(PQ) [3], and PQ with PQ codebook compressed with
scalar-based compression with 8-bit. For PQ, we vector-
quantized every 8 elements of the weight vectors with 256
(8-bit) codewords, which leaded to 1-bit representation per
element. Table 1 shows the results in top-1 and top-5 accu-
racy and the required memory size. While without compres-
sion the size of the total weight vectors, 292Mbyte, is too
large for mobile implementation, with scalar compression
the size, 18.2Mbytes, is feasible. Although the compres-
sion ratio for PQ is 1/32 which is half of the 2-bit scalar-
based compression, the memory to store the codebooks is
required to reconstruct original vectors for evaluation of
classifiers. In this case, 7.3Mbytes is needed in addition
to memory for PQ-coded vectors, and totally 16.4Mbytes is
needed. Additionally, by applying the scalar-based method
with 8-bit representation to PQ codebook, it can be reduced
to 1.8Mbyte with only 0.09% performance loss, and total
amount is 10.9MByte. This shows combination of PQ and
the scalar-based compression is also effective.

Table 1. The results for ImageNet10k in case of no compression,
the proposed scalar-based compression with 2-bit, Product Quanti-
zation(PQ) [3], and PQ with PQ codebook compressed with scalar-
based compression with 8-bit. “PQCB” means the codebook of

PQ.

| method [ top-1 (%) [ top-5 (%) [ memory (Mbyte) ‘
no compression 11.83 25.25 292M
scalar 11.42 24.30 18.2M
PQ[3] 10.96 23.85 | 9.1M + 7.3M (PQCB)
PQI[3] + scalar 10.87 23.75 9.1M + 1.8M (8bit)

6. Conclusions and Future Work

In this paper, we proposed an improved scalar-based
compression method for weight vectors of linear classi-
fiers. With the method, we have implemented a client-
side large-scale image classification on an Android smart-
phone, which can perform 1000-class classification for a
given image in 0.159 seconds. In the experiments, we
showed that compressing the weight vectors to 1/16 leaded
to only 0.61% performance loss for 1000-class classifica-
tion, which proved the effectiveness of the proposed method
for large-scale classification on mobile devices and em-
bedded devices where the amount of available memory is
limited. In addition, the experimental results also proved
that the proposed method enabled us to boost classification
performance keeping memory size constant by compress-
ing weights and instead increasing a codebook size even
for normal-scale classification. When fixing the amount of
memory for the weight vectors, the experimental result indi-
cated that increasing the codebook size of Fisher Vector as
much as possible and instead binarizing the weight vectors
were the best choice in terms of classification performance.
In other words, the gain by increasing the codebook size
outperformed the loss by vectorization of the weight vec-
tors. This is a new finding in this paper.

For future work, we will extend the proposed method to
multi-layered deep neural network the structure of which is
combination of linear classifiers and non-linear activation
function such as ReLU, and implement the state-of-the-art
large-scale image classifier.
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