
x

x2

Keiji Yanai, Ryosuke Tanno, Koichi Okamoto The University of Electro-communications, Tokyo, Japan

1. Objective 4. Fast Implementation on Mobile Devices

5. Weight Compression

3. CNN Architectures & Multi-scale NIN

[1] M. Lin, and Q. Chen, and S. Yan.: Network In Network. Proc. of International Conference on Learning Representations, 2014
[2] H. Jegou, M. Douze, and C. Schmid.: Product quantization for nearest neighbor search, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011
[3] S. Ioffe and C. Szegedy.: Batch normalization: Accelerating deep network training by reducing internal covariate shift, Proc. of International Conference on Machine Learning, 2015

6. Experiments

・ Make it easier to implement CNN-based object recognition apps !
− High recognition accuracy by using Deep Convolutional Neural Network
− Very high speed by efficient implementation
− Memory saving by PQ-based weight compression
− Converting CNN models trained by Caffe

into mobile object recognition engines

・ Example: 100-class food recognition
− recognition time: 26.2ms (iPhone7+)
− top-5 accuracy: 93.7%

2. Contributions
・ Compare CNN architectures and select NIN for a base mobile CNN

− Compare AlexNet, VGG-16, GoogleNet and Network-in-Network (NIN)
− Conclude that NIN is the best architecture for mobile implementation

in terms of weight size and computational efficiency

・ Examine fast CNN implementations on iOS and Android
− For iOS, using BLAS in the iOS Accelerate Framework is the best choice.
− For Android, using NEON (SIMD instruction) is better than OpenBLAS.

・ Adjust speed and accuracy by multi-scale NIN
− By introducing Global Average Pooling (GAP) into the last layer of NIN,

NIN accepts input images of any size like FCN
− User can adjust the balance between speed and accuracy by changing

the size of input images
e.g. iPhone 7 Plus: 26.2[ms] for 160x160 imgs ⇔ 55.7[ms] for 227x227

・ PQ-based weight compression of Conv Layers
− 1/8 compression without significant performance loss

・As basic CNN architectures for object recognition, AlexNet, Network-
in-Network (NIN), GoogLeNet and VGG- 16 are commonly used.
− The amounts of weights in AlexNet and VGG-16 are too much for mobile.
− GoogLeNet is too complicated for efficient parallel implementation.

(It has many branches.)

・We adopt Network-in-Network[1]
− No fully-connected layers

(which brings less weights)
− Straight flow and consisting of

only convolutional and pooling layers
⇒ It’s easy for parallel implementation.

Efficient computation for convolutional layers is important !

・We modified models (BN, 5layer, multi-scale)
− adding BN[3] layers just after all the conv/cccp layers
− replaced 5x5 conv with two 3x3 conv layers
− reduced the number of kernels in conv 4 from 1024 to 768

− replaced fixed average pooling with Global Average Pooling
Network-In-Network(NIN)

model AlexNet VGG-16 GoogleNet NIN

conv
layer 5 13 21 12

weights 3.8M 15M 5.8M 7.6M
comp. 1.1B 15.3B 1.5B 1.1B

FC
layer 3 3 1 0

weights 59M 124M 1M 0
comp. 59M 124M 1M 0

TOTAL
weights 62M 138M 6.8M 7.6M
comp. 1.1B 15.5B 1.5B 1.1B

ImageNet top-5 err. 17.0% 7.3% 7.9% 10.9%

layer no. (1) original NIN (2) 4layers+BN (3) 5layers+BN

1 11x11x96 conv1 11x11x96 conv1 11x11x96 conv1

2 1x1x96 cccp1_1 1x1x96 cccp1_1 1x1x96 cccp1_1

3 1x1x96 cccp1_2 1x1x96 cccp1_2 1x1x96 cccp1_2

4 5x5x256 conv2 3x3x256 conv2_1 3x3x256 conv2_1

5 1x1x256 cccp2_1 3x3x256 conv2_2 3x3x256 conv2_2

6 1x1x256 cccp2_2 1x1x256 cccp2_1 1x1x256 cccp2_1

7 3x3x384 conv3 1x1x256 cccp2_2 1x1x256 cccp2_2

8 1x1x384 cccp3_1 3x3x384 conv3 3x3x384 conv3

9 1x1x384 cccp3_2 1x1x384 cccp3_1 1x1x384 cccp3_1

10 3x3x1024 conv4 1x1x384 cccp3_2 1x1x384 cccp3_2

11 1x1x1024 cccp4_1 3x3x768 conv4 3x3x768 conv4

12 1x1xN cccp4_2 1x1x768 cccp4_1 1x1x768 cccp4_1

13 avg. pool 1x1xN cccp4_2 1x1x768 cccp4_2

14 softmax avg. pool 3x3x1024 conv5

15 softmax 1x1x1024 cccp5_1

16 1x1xN cccp5_2

17 avg. pool

18 softmax

weights 7.6Million 5.5Million 15.8Million

computation 1.1Billion 1.2Billion 1.7Billion

4layers

5layers + BN

227x227 200x200 180x180 160x160

Trade-off: Accuracy vs speed
Ex. 4layer+BN (iPhone7Plus)

(top-1) 227x227
55.7ms 78.8%

180x180
35.5ms 76.0%

160x160
26.2ms 71.5%

Multi-scale NIN

・ Speeding up Conv layers ⇒ Speeding up GEMM
− computation of conv layers is decomposed

into “im2col” operation and generic matrix multiplications (GEMM)
− Multi-threading : Use 2 cores in iOS , 4 cores in Android in parallel
− SIMD instruction (NEON in ARM-based processor)

NEON can compute four FP comp. in parallel. ⇒ four times speedup
Total: iOS: 2Core*4 = 8 calculation, Android: 4Core*4 = 16 calculation

− BLAS library (highly optimized for iOS ⇔ not optimized for Android)
BLAS (iOS: BLAS in iOS Accelerate Framework, Android: OpenBLAS)

conv. kernels
input feature maps

kernel 2

kernel 3

kernel 1

2
3

patch
1

patch
2

patch
3

patch
4

patch
5

im2col

matrix multiplication (=conv. layer computation)

1

4

kernel 4

Parallel computation over multiple cores
In each core, parallel comp. by NEON or BLAS as well

p
at

ch
 1

p
at

ch
 2

p
at

ch
 3

p
at

ch
 4

p
at

ch
 5

p
at

ch
 1

p
at

ch
 2

p
at

ch
 3

p
at

ch
 4

p
at

ch
 5

kernel 1

Core1

kernel 2

p
at

ch
 1

p
at

ch
 2

p
at

ch
 3

p
at

ch
 4

p
at

ch
 5

Core2 Core3 Core4

kernel 3

p
at

ch
 1

p
at

ch
 2

p
at

ch
 3

p
at

ch
 4

p
at

ch
 5

p
at

ch
 1

p
at

ch
 2

p
at

ch
 3

p
at

ch
 4

p
at

ch
 5

kernel 4

raw(32bit) 8bit 4bit 4bit(pair) 2bit(pair)

memory 30.4MB 7.6MB 3.8MB 3.8MB 1.9MB

top-1 75.0% 74.5% 66.8% 72.9% 50.3%

top-5 93.7% 93.5% 89.7% 92.9% 78.1%

・We applied Product Quantization (PQ) [2] to compress CNN
weights for NIN to reduce required memory on mobile devices.
− no compresion to 1/16 compression
− 8bit and 4bit: We applied quantization to each single element
−4 bit(pair) and 2bit(pair): We applied quantization to each pair of elements

・ PQ-based compression is helpful for NIN as well.
− Performance loss(4bit(pair)) was only 2.1 point, although it

brought 1/8 compression

・ Implementation
− We have implemented a mobile deep learning framework which works on

both iOS and Android.
− Supports only deployment of trained CNN models on iOS and Android
− Using Caffe for training of CNN models on a PC (2 Titan-X GPUs)

・ Training
− augmented UEC-FOOD 100

(1000 images / class)
− Pre-trained CNNs with

ImageNet 2000 category
(ILSVRC2012 1000, food1000)
(totally 2.1 million images)

Reference

NIN(BLAS) NIN(NEON) NIN4 NIN5 D-Belief

iPhone 7 Plus - - 55.7[ms] 88.7[ms] 109.0[ms]

iPad Pro 66.0[ms] 221.4[ms] 66.6[ms] 103.5[ms] 131.9[ms]

iPhone SE 79.9[ms] 251.8[ms] 77.6[ms] 116.6[ms] 137.7[ms]

Galaxy Note 3 1652[ms] 251.1[ms] - - -

model
ImageNet2000 UEC-FOOD

top-1 top-5 top-1 top-5 weights

FV(HOG+color) - - 65.3% 86.7% 5.6M

AlexNet 44.5% 67.8% 78.8% 95.2% 62M

NIN 41.9% 65.9% 75.0% 93.7% 7.6M

NIN(4layers+BN) 39.8% 65.0% 77.9% 94.6% 5.5M

NIN(5layers+BN) 45.8% 70.5% 80.8% 95.4% 15.8M

Time 227x227 200x200 180x180 160x160
iPhone 7 Plus 55.7[ms] 42.1[ms] 35.5[ms] 26.2[ms]

iPad Pro 66.6[ms] 49.7[ms] 44.0[ms] 32.6[ms]
iPhone SE 77.6[ms] 56.0[ms] 50.2[ms] 37.2[ms]
Accuracy top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

resize 78.8% 95.2% 77.3% 95.1% 76.0% 94.1% 69.3% 91.5%
crop 78.8% 95.2% 75.8% 93.9% 72.0% 92.1% 63.0% 87.7%

multi-resize 74.7% 93.9% 74.0% 94.6% 74.4% 94.7% 71.5% 93.7%
multi-crop 74.7% 93.9% 70.8% 92.2% 69.8% 92.2% 61.4% 87.2%

Time 227x227 200x200 180x180 160x160
iPhone 7 Plus 88.7[ms] 59.3[ms] 49.5[ms] 38.7[ms]

iPad Pro 103.5[ms] 71.9[ms] 61.1[ms] 46.6[ms]
iPhone SE 116.6[ms] 82.9[ms] 68.6[ms] 53.4[ms]
Accuracy top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

resize 81.5% 96.2% 80.2% 95.7% 78.4% 94.9% 72.0% 91.4%
crop 81.5% 96.2% 78.3% 95.1% 75.1% 93.6% 65.3% 87.3%

multi-resize 78.2% 95.3% 78.2% 95.1% 78.2% 95.6% 75.1% 93.8%
multi-crop 78.2% 95.3% 75.8% 93.2% 73.1% 92.2% 66.3% 88.3%

Recognition time on mobile devices (227x227)

Recognition accuracy of the
trained models

(A)4-layer+BN

(B)5-layer+BN

Trade-off between Time and accuracy
with images of various size for multi-scale NIN

DeepFoodCam DeepBirdCam DeepDogCam

Global Average Pooling (GAP)

