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We back-propagate expected class scores generated by

setting 1 for one of the top N-classes and 0 for the others. Refe rences
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obtained by propagating class scores from the top layer. 1] K. Simonyan et al. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. ICLR, 2014.

2] J. Springenberg et al. Striving for Simplicity: The All Convolutional Net. ICLR, 2015.

3] B. Hariharan et al. Semantic Contours from Inverse Detectors. ICCV, 2011.



