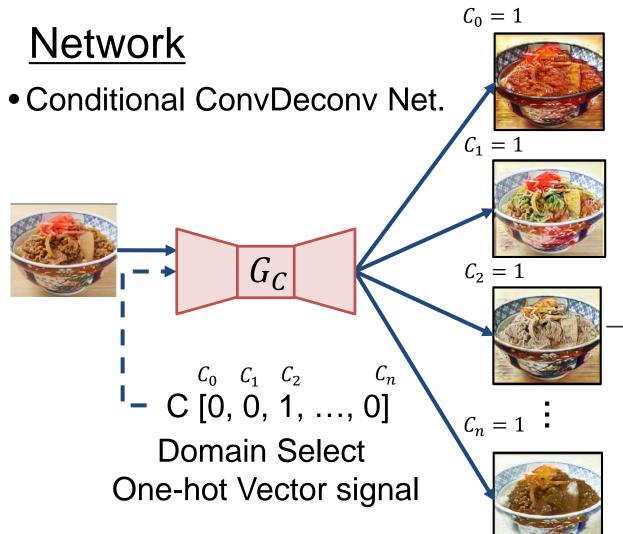
Magical Rice Bowl: A Real-Time Food Category Changer

Ryosuke Tanno [†] Daichi Horita ^{††} Wataru Shimoda ^{††} Keiji Yanai ^{††} † NTT Communications, ††The University of Electro-Communications, Tokyo, Japan



Project HP

Overview

Multi-Domain Image-to-Image Translation at Food Domain

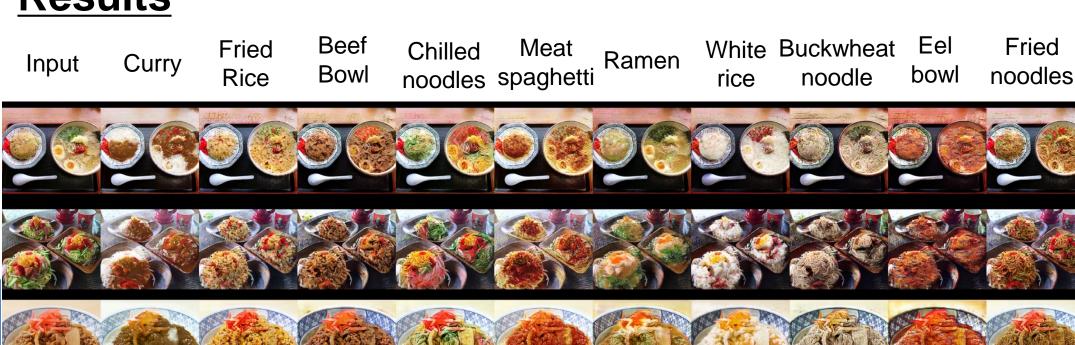
-Based on a StarGAN[1] with a large-scale food image data collected from the Twitter Stream.

- We used 230k food images of ten kinds of typical Japanese foods.
- We limited to foods in a bowl.

Table 1: training data			
$\operatorname{category}$	image number		
chilled noodles	13,499		
meat spaghetti	7,138		
buckwheat noodle	3,530		
ramen	74,007		
fried noodles	24,760		
white rice	21,324		
curry rice	34,216		
beef bowl	18,396		
eel bowl	5,329		
fried rice	27,854		
TOTAL	230,053		
	ı		

Experiments

Diversity in datasets makes it difficult to generate clear results...



We focused on **Only Bowl food!**

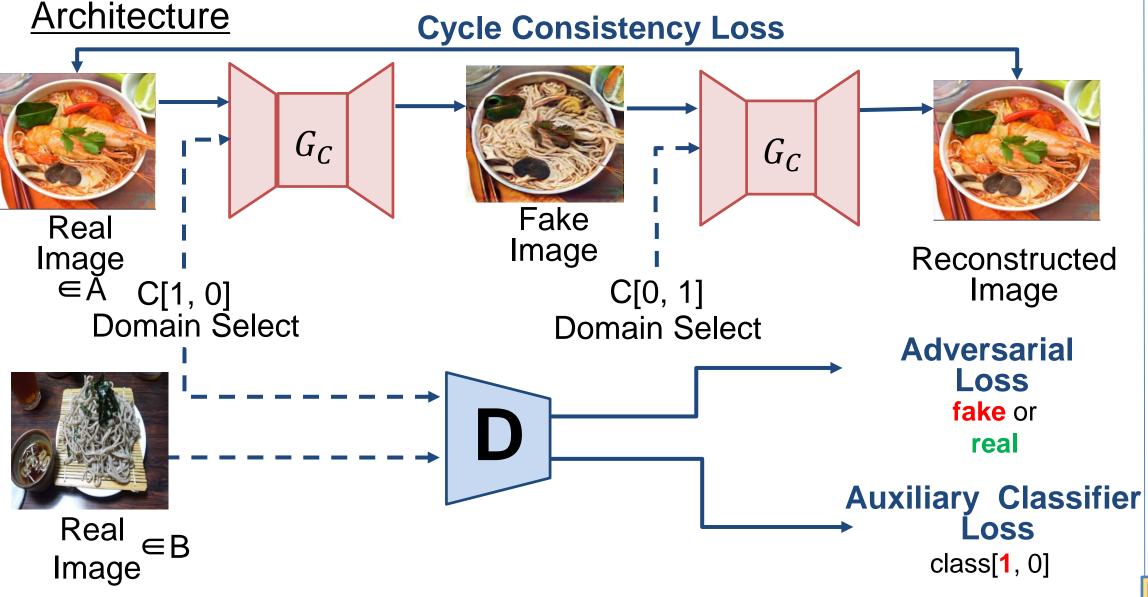
00				19
Ramen	Rice	Buckwheat noodle	Eel bowl	Fried noodle
74k	25k	3.3k	5.3k	25k

Results

Datasets

There are many works where **letters** and **faces** are well generated and translated by GANs.

However, there are few cases of **Food**.



Methods

-We used StarGAN[1] architecture. Combining loss functions of [2] and [3].

$$L_{acl}^{real} = \mathsf{E}[-log D_{acl}(c'|x)] \qquad \qquad L_{acl}^{fake} = \mathsf{E}_{x,c} \left[-log D_{acl}(c|G(x,c))\right]$$

$$L_D = L_{adv} + \lambda_{acl} L_{acl}^{real} \qquad \qquad L_G = L_{adv} + \lambda_{acl} L_{acl}^{real} + \lambda_{ccl} L_{ccl}$$

 $L_{ccl} = \mathsf{E}_{x,c,c'} ||x - G(G(x,c),c')||_1$

References

- [1] Y. Choi, M. Choi, M. Kim, J. Ha, S. Kim and J. Choo, StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation, CVPR2018.
- [2] J. Y. Zhu, T. Park, P. Isola and A. A. Efros, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV2017.
- [3] A. Odena, C. Olah, and J. Shlens. Conditional Image Synthesis With Auxiliary Classifier GANs. ICML2017.

The quality heavily depends on the number of training samples.

Demo Food

