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Introduction
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What is a rescue dog?

*A dog that does not perform rescue work, but searches for
victims in disaster areas.

*Handler manually records actions and verbally explains
them to commander

*lMake a disaster rescue plan based on the information
from rescue dogs and handlers.
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Challenges in Utilizing Rescue Dogs MEC

*Manual recording by handlers is insufficient in terms of
objectivity and quantity of information.

*Verbal explanation is insufficient to ensure accuracy of
information

More and more accurate information on the rescue do
IS required
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Background UEC
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Cyber suit UEC

Development of a wearable measurement and recording
device
Equipped with camera, microphone, inertial sensor, etc.
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Objective UEC

*Using Deep Learning to Recognize Rescue
Dog Behavior

*Using the multimodal rescue dog data (video, audio,
and sensor information) provided by Professor Ohno
of Tohoku University.
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Related Work UEC

Spatial stream ConvNet
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*Two-Stream CNN
[K.Simonyan, NIPS 2014]
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Temporal stream ConvNet
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optical flow

Figure 1: Two-stream architecture for video classification.
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Related Work UEC

TB N All modalities

"arrange bell-pepper" are trained
simultaneously

*Temporal Binding Network
[K.Evangelos, ICCV 2019]

fc-class

mid-fusion

avg avg avg
pool pool pool
153 B i
L > |
|
I

2021/1/5 8 U\




Previous Work UEC
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*Dogcentric activity recognition by integrating appearance,
motion and sound. [T. Araki,EPIC 2019]
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Dataset UEC
Rescue Dog Data Set

*A group of videos showing rescue dogs in training.

RGB Image Optical flow Image STFT
2021/1/5 10 \




Dataset UEC

Rescue Dog Data Set

*Information obtained from sensors
*x sens time:second(s)
*Gy, Gy, G,: angular velocity(deg/s ~
*Ay, Ay, A, acceleration(m/s"2) Data used
*Roll,Pitch,Yaw: posture(degree)

*My, My, M,: geomagnetism(uT)
*Pressure(hPa)
*Temperature

*https://www.amtechs.co.jp/product/gps/post-A25 |+
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Dataset UEC
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Dog Activity Classes UEC

Some of the behavior classes are described in detail

e cling : The situation in which a doc is sniffing with the
nose close to the smell.

e command : The situation in which the dog is being
instructed by the handler.

* look at handler : The situation in which the dog is
looking at the handler. Hereinafter, this action is called
just “handler”.
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Outline of the proposed method ~ UEC
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Multi-class labels UEC

MultiLabel SoftMarginLoss

loss(x,y) = — é x 3 ({yi} * log((1 + exp(—z;)) ™)
) xlo exp(—x;)
+ (1 —ys) 1 g(1+e$p(_xi)))

X : output of the network
y : target,
C :numer of the classes
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Method

Sound stream

(1,224,224)

RGB stream
(3,224,224)

Optical flow stream

(3,224,224)

Sensor stream

(310,9)
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Method UEC

*Sensor information(310,9)
*Sensor acquires information every 0.005 seconds

0.005 x 320 = 1.6(s)
Smoothing with 10 pieces of data 320 - 310

9 :Gy, Gy, G,: angular velocity(deg/s)

Ay, Ay, A, acceleration (m/s”2)
Roll,Pitch,Yaw: attitude (degree)
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Experiments UEC

*Data set used
Rescue dog training data recorded on July 10, 2016.
(about 12 minutes)
Rescue dog training data recorded on November 11, 2016.
(about 4 minutes and 50 seconds)

*Training data set
First 80% of the data set used (22979 frames)

*Data set for evaluation
Second half 20% of the dataset used (6643 frames)

*Indicators for accuracy comparison
Jaccard coefficient TP

(TP + FP + FN)
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Differences between the previous

study and the proposed method
Araki et VGG- Proposed Proposed
al. ResNet method 1 method 2

RGB |VGG-16| VGG-16 VGG-16 VGG-16

Optical |VGG-16| VGG-16 VGG-16 VGG-16

Flow

Sound | 2D Conv | ResNet-101 | ResNet-101 | ResNet-101
(MFCC) (STFT) (STFT) (STFT)

Sensor | None None Bi-GRU Bi-LSTM
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Comparison with each method [%]
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Comparison with each method [%)]
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Discussion

TOKYO

Comparison between Araki's method and the proposed method[%]
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* Use of sensor information is essential.
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Conclusions UEC
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*Proposed an image/sound/sensor-based four-stream CNN

*The effectiveness of using sensor information is
effective.
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Future challenges UEC

*Use of time series information

Video information : - Video information :
2D conv 3D conv

*Expansion of the data set

Increase in the number of datasets that include video and
sensor information

2021/1/5 24 ah)




2021/1/5 25 PR




