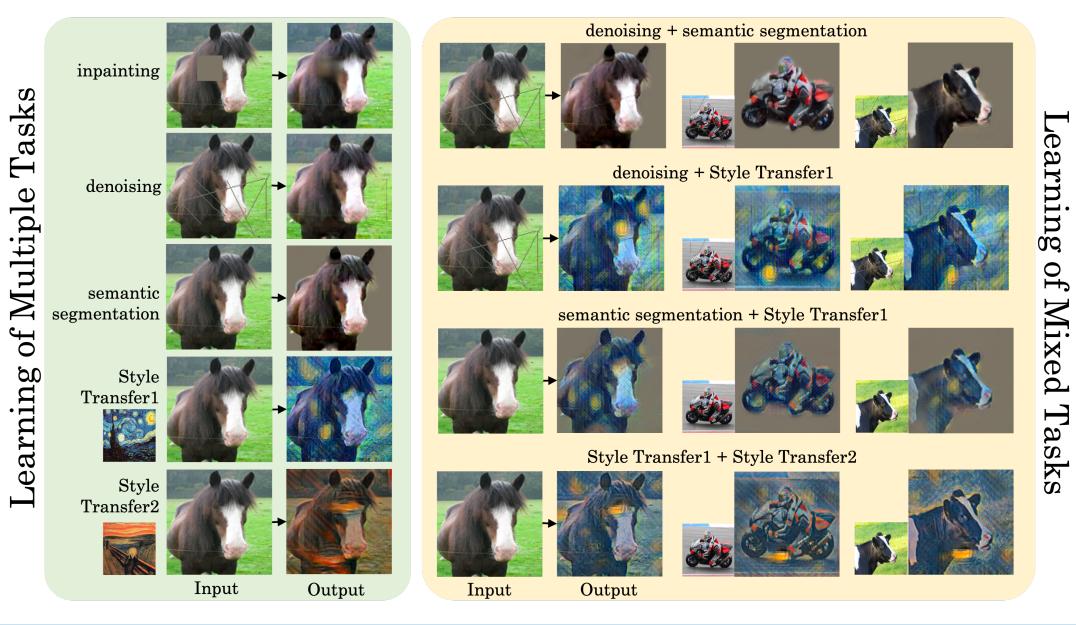
Training of Multiple and Mixed Tasks With A Single Network Using Feature Modulation

Mana Takeda¹, Gibran Benitez¹, and Keiji Yanai¹ ¹The University of Electro-Communications, Tokyo

Abstract

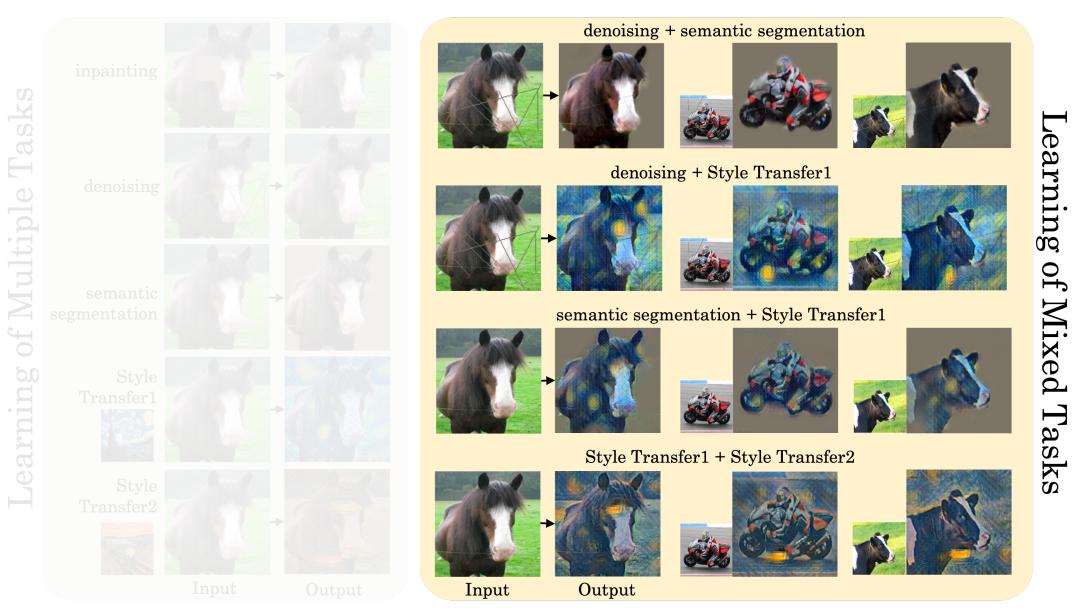


Abstract



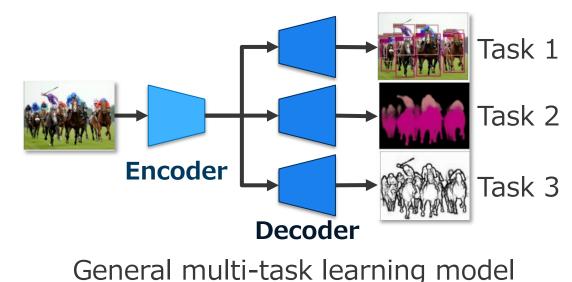
of Mixed

Abstract

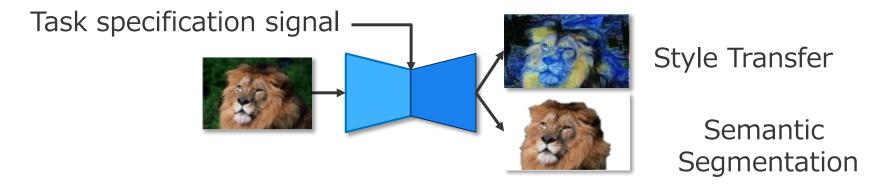


3

- Multi Task Learning
 - Run multiple tasks on a single network.
 - In general, MTL models require task-specific parts, in addition to the parts shared by all the tasks.
 - As the number of tasks increases, the network becomes larger.
- We propose a single network with negligibly small task-specific parts.

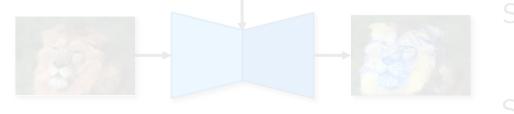


1. Learning multiple heterogeneous image transfer tasks in a single network.



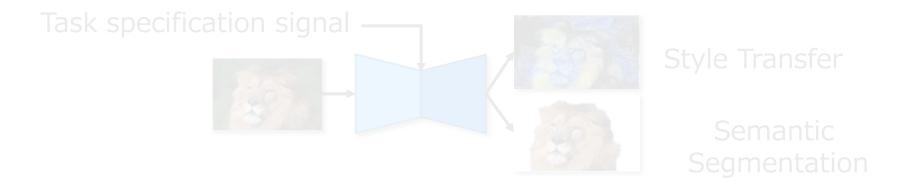
2. Learning mixed-task in the proposed network using synthesized mixed-task training samples.

Task specification signal

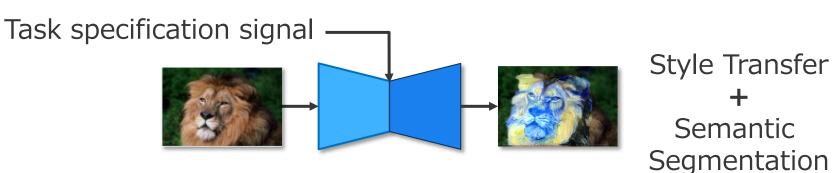


Style Transfer + Semantic Segmentation

1. Learning multiple heterogeneous image transfer tasks in a single network.



2. Learning mixed-task in the proposed network using synthesized mixed-task training samples.

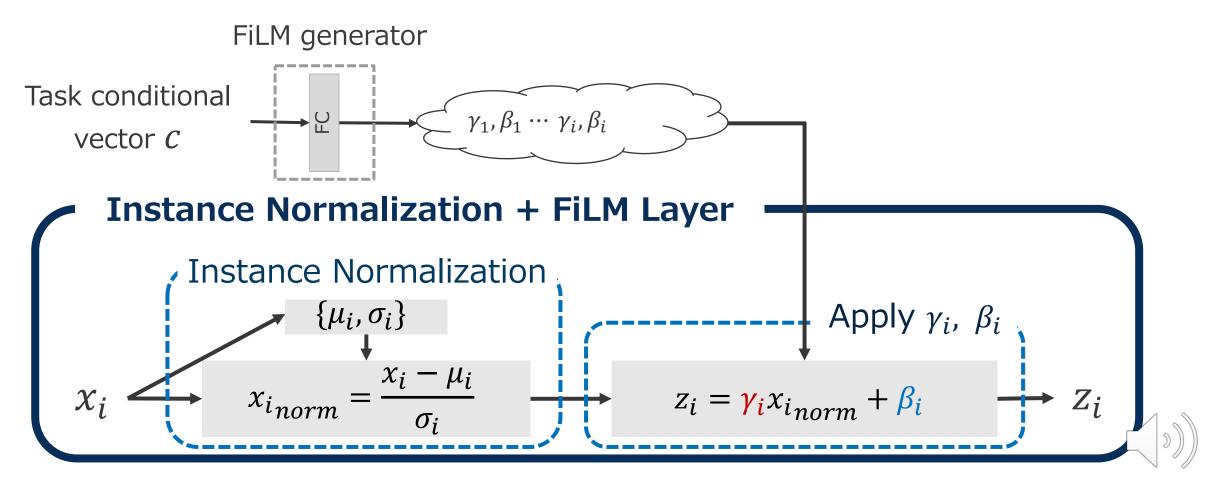


- Task conditional vector $\boldsymbol{c} = [c_1, c_2, \cdots, c_n]$
 - -c: Task Strength ($0 \le c \le 1$)
 - -n: Number of tasks

- Ex.) If the number of tasks *n* is 3, $\mathbf{c} = [c_1, c_2, c_3]$
 - Learn only Task 1 : [1, 0, 0]
 - Mixed learning of Task 1 and Task 3 : [1, 0, 1]

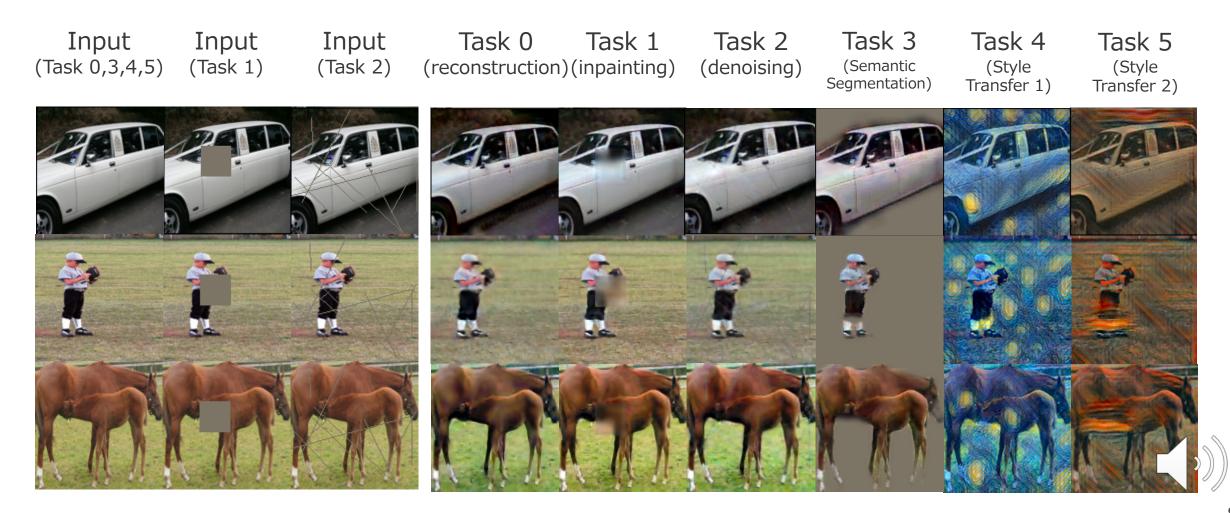
Overview of the method - FiLM-based network architecture

• After normalizing the input features by Instance Normalization, affine transformation with FiLM parameters is applied.



Experiment 1: Learning of Multiple Different Tasks

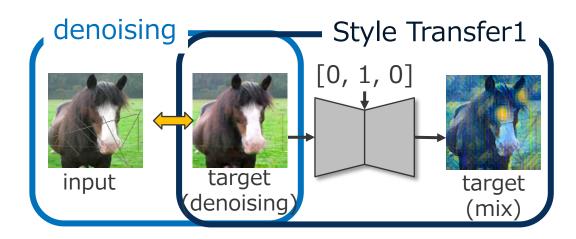
• Multiple different image translation tasks can be learned with a single FiLM-based model.



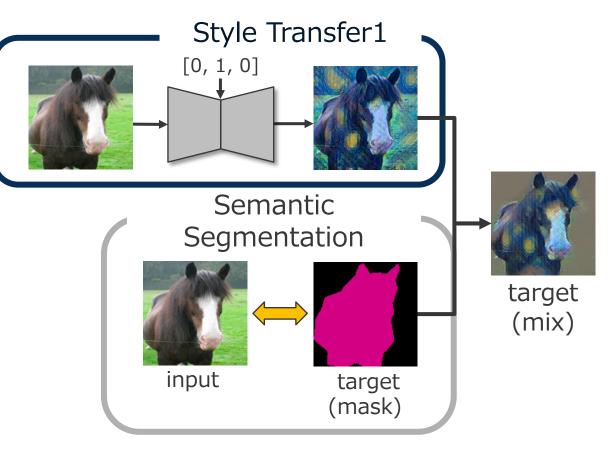
• For verification of mixed-task learning, four tasks were used.

Number	Task name	Conditional vector
Task 0	reconstruction	[0, 0, 0]
Task 1	denoising	[1, 0, 0]
Task 2	semantic segmentation	[0, 1, 0]
Task 3	Style Transfer 1	[0, 0, 1]
Mix 1	denoising + Style Transfer 1	[1, 0, 1]
Mix 2	denoising + semantic segmentation	[1, 1, 0]
Mix 3	semantic segmentation + Style Transfer 1	[0, 1, 1]

Experiment 2: Learning of Mixed Tasks - How to create a target

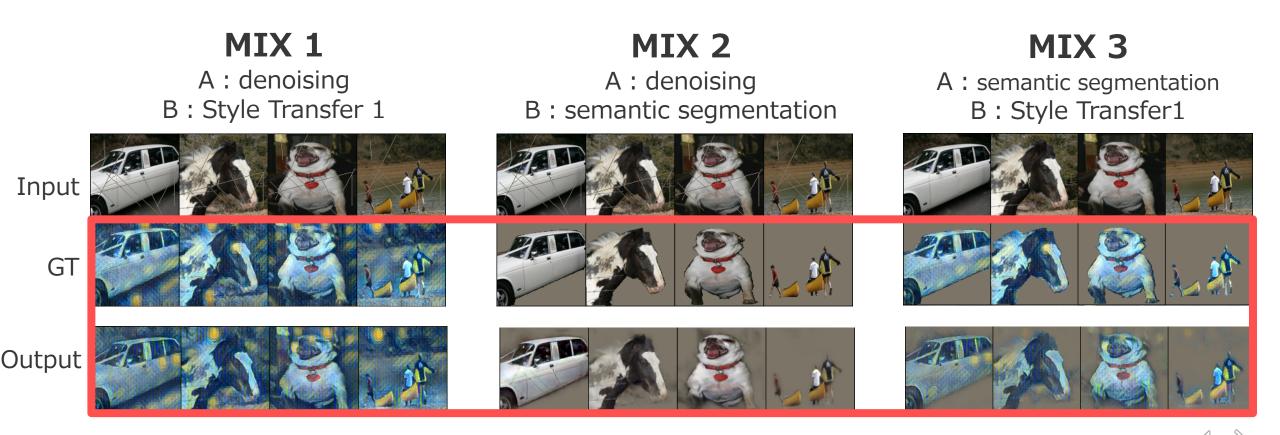


(a) sequential mixing



(b) mixing by region masking

• The results are almost the same as ground truth (GT), which means mixed- task learning succeeded.



• This shows their outputs when learning of multiple heterogeneous image translation tasks.

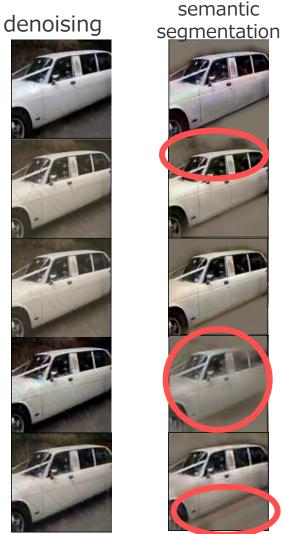
Ours

SGN [ICCV2019]

SGN+bias [ICCV2019] Extention

Piggyback1 [ECCV2018]

Piggyback2 [ECCV2018]



Style Transfer 2

• This compares the output of the proposed method and the baseline for mixed-task learning.

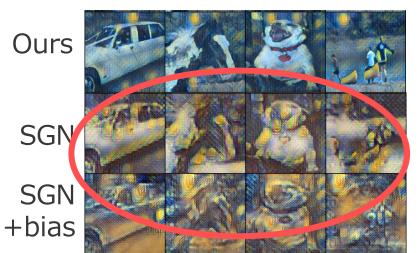
MIX 1 A : denoising B : Style Transfer 1

Input

MIX 2 A : denoising B : semantic segmentation

MIX 3

A : semantic segmentation B : Style Transfer1



Experiment 3: Comparison to the Baselines

	Ours	SGN	SGN+bias	Piggyback1	Piggyback2
reconstruction (PSNR \uparrow)	8.514	3.786	3.777	7.964	7.908
inpainting (PSNR \uparrow)	10.306	3.445	3 /51	0 101	8 1 3 9
denoising (PSNR \uparrow)	10.762	Ours achieved the best evaluation scores			2
semantic segmentation (IoU \uparrow)	0.5907	in almost all the tasks			14
Style Transfer 1(FID \downarrow)	281.3	299.0	307.1	333.4	331.4
Style Transfer 2 (FID \downarrow)	235.3	263.6	250.1	297.6	323.3
denoising + Style Transfer 1 (FID \downarrow)	304.3	349.1	343.4	-	-
denoising+ semantic segmentation (PSNR↑)	6.716	2.442	2.470	-	-
semantic segmentation + Style Transfer 1 (FID \downarrow , IoU \uparrow)	313.0 0.5457	small model size			-
Model size (num. of prams)	1,698,435	1,705,363	1,902,243	1,679,235	1,679,23

- we performed learning of multiple different image translation tasks and their mixed tasks with the single FiLM-based network.
- Our method realized mixed task learning in addition to learning multiple individual tasks.
- In future work, we plan to add more tasks such as various kinds of image do- main translation tasks and mix them.

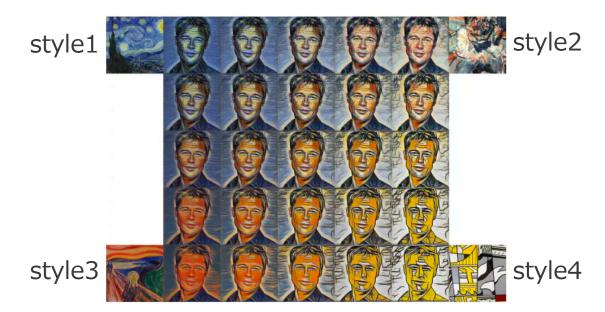
Motivation to use FiLM

• The effectiveness of the method has been demonstrated in various image transformation tasks.

 \rightarrow It has high versatility and can be used to learn various image transformation tasks.

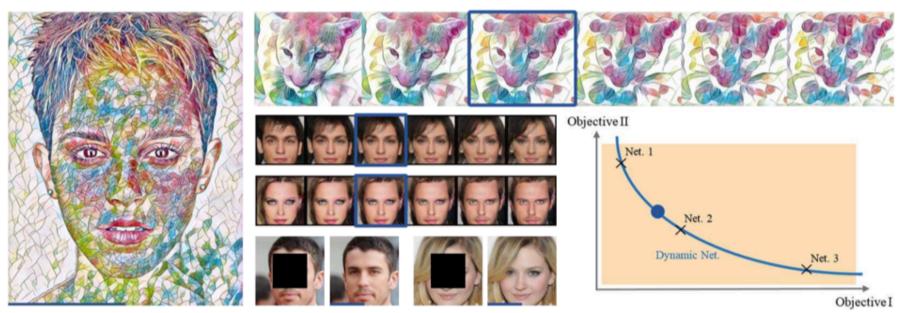
• FiLM allows the combination of multiple styles in Style Transfer.

→Possibility to combine several different image transformation tasks.



[3] Dumoulin et al.: A learned representation for artistic style, ICLR 2017.

- A similar example of manipulating the strength of a transformation with conditional signals is Dynamic-Net.
- We consider the objective space of various image transformation tasks to be a linearly coupled space of pre- and post-task execution.



Alon Shoshan, Roey Mechrez, and Lihi Zelnik-Manor. Dynamic-net: Tuning the objective without re-training. In Proc.of IEEE International Conference on Computer Vision, 2019.

Mixed-task learning in the presence of many tasks

- When there are many tasks, it is hard to learn all combinations of them.
- Therefore, our goal is to be able to generate task combinations during inference by simply learning each task individually.