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Figure 1: 3D reconstruction results from real food photos with ResNet18, 𝜆3 = 20 (w/ 3D consistency loss) and backgrounds.

ABSTRACT
Dietary calorie management has been an important topic in recent
years, and various methods and applications on image-based food
calorie estimation have been published in the multimedia com-
munity. Most of the existing methods of estimating food calorie
amounts use 2D-based image recognition. On the other hand, in
this paper, we would like to make inferences based on 3D volume
for more accurate estimation. We performed 3D reconstruction of
a dish (food and plate) and a plate (without foods), from a single
image. We succeeded in restoring the 3D shape with high accuracy
while maintaining the consistency between a plate part of an es-
timated 3D dish and an estimated 3D plate. To achieve this, the
following contributions were made in this paper. (1) Proposal of
“Hungry Networks,” a new network that generates two kinds of 3D
volumes from a single image. (2) Introduction of 3D shape consis-
tency loss that matches the shapes of the plate parts of the two
reconstructed models. (3) Creating a new dataset of 3D food models
that are 3D scanned of actual foods and plates. We also conducted
an experiment to infer the volume of only the food region from
the difference of the two reconstructed volumes. As a result, it was
shown that the introduced new loss function not only matches the
3D shape of the plate, but also contributes to obtaining the volume
with higher accuracy. Although there are some existing studies that
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consider 3D shapes of foods, this is the first study to generate a 3D
mesh volume from a single dish image.
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1 INTRODUCTION
It is necessary to consider the amount of food for accurate esti-
mation of the amounts of food calories for dietary management.
Various methods and applications on image-based food calorie esti-
mation have been published in the multimedia community. Most
of the existing methods of estimating food calorie amounts use
2D-based image recognition. Some methods infer calorie amounts
directly with regression [6, 7], while the others estimate calorie
amounts based on 2D area sizes using detection and segmentation
methods [5, 8]. However, most of the image-based methods cannot
estimate the actual size of foods. Then, size-known reference objects
were commonly used for accurate food calorie estimation. Recently,
some works use AR/MR devices to estimate accurate actual food
size without a reference object [21, 30].

However, the accuracy of the calorie estimation by 2D-based
methods is limited due to the 3D nature of real foods. 3D-based
methods have been explored so far as well. Some works tried to
estimate 3D volume of foods from a single image using depth es-
timation CNNs [18, 20] and using a depth camera mounted on a
recent smartphone [1]. In these studies, the meal was assumed to
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be on a plate on a flat surface. If multiple depth images are collected
from various viewpoints, more accurate shape can be obtained us-
ing a fusion algorithm [22, 23, 33]. However, this is not realistic
when used in a real situation. This is because it is not easy to take
multiple depth images for a single dish. Therefore, in this work, we
propose “Hungry Networks,” which is a network for simultaneous
3D reconstruction of both a dish and a plate from a single 2D image.
By using the difference between the estimated volumes of a dish
and a plate, we can obtain only the food volume, which is difficult
to obtain in general. To estimate the difference of two volumes, we
introduce 3D shape consistency loss, which is a new loss function
for matching the plate parts of the two output models.

Note that we do not estimate 3D food-only volumes directly,
since it is difficult to create a dataset containing 3D food-only vol-
umes. Because 3D scanned volume data contains noise and defects,
the shapes of plate parts between a dish volume (containing foods
and a plate) and a plate volume (containing no foods) does not
completely match. Therefore, we estimate volumes of a dish and a
plate simultaneously instead of estimating a food volume directly
from a single food image.

Although some existing dietary datasets contain depth images,
none contain a complete 3D shape (mesh) of foods. Therefore, in
this work, we captured dishes and plates with a 3D scanner, and
created a 3D mesh food data set. The corresponding dish image was
created by rendering a scanned 3D model. We also experimented
with whether the model learned from the rendered image can be
reconstructed from the actual dish image. The contributions in this
paper are as follows:

• Proposing “HungryNetworks,” a new network that generates
two models from a single image.

• Introduction of 3D shape consistency loss that matches the
shape of the plate part of the two reconstructed 3D models.

• Creating a new dataset of 3D models with 3D scans of real
food and plate.

2 RELATEDWORK
2.1 3D shape reconstruction from a single

image
There are three major methods for reconstructing a 3D shape from
a single image regarding 3D representation: voxel-based, point-
cloud-based, and mesh-based.

The methods for estimating voxels [4, 31, 34] uses the memory
of the GPU very much. Therefore, it can be reconstructed only at
a low resolution. When trying to get high resolution output in a
voxel representation, the implementation becomes very complex.
Since the output representation of a point cloud [10] simply outputs
a set of points, the connection between points must be calculated
separately in order to obtain the shape of the object. Outputs in a
mesh representation mainly includes a method that uses a Mesh
template [13, 27, 32], a method that dynamically creates a Mesh tem-
plate [12], a method that uses geometry image [24], an occupancy
expression-based method [19, 28, 29], and a Signed Distance Field
(SDF) based method [25]. Since the mesh representation consists
of points and their connecting edges and faces, it can be memory-
efficient and high-resolution compared to voxels. Since the mesh
representation consists of points and their connected edges and
surfaces unlike the point-cloud representation, it is more memory
efficient than voxels and has higher resolution than voxels.

2.2 Food recognition considering 3D shapes
In this section, we review works on diets that consider 3D shape or
volume. The ultimate goal of each study is to estimate the amounts
of calories and ingredients. In Chen et al. [3], a depth sensor is
used to take a depth image to estimate the amount of calories in
a food. Some methods such as Puri et al. [26] and DietCam [16]
obtained a 3D shape by estimating a classical camera matrix from
multiple viewpoints. In recent years, CNN-based has been acitively
explored. Lu et al.[18] generated a depth image using a neural
network and tried to infer the amount of food from the generated
depth image. Im2calories[20] is trying to estimate the calorific value
by estimating the 3D shape in voxel representation from a color
image.

3 METHOD
In this work, we restore 3D shape from a single food image. In
general, regarding 3D representation, 3D reconstruction methods
can be classified into three main types: voxels, point clouds, and
meshes. In this work, we focus on mesh. This is because we are
trying to reconstruct the 3D shape of dish and plate only from a
single dish image, and to obtain the volume of only the food area
from their difference. To achieve the same goal, voxels must be done
in high resolution, which is very costly for computational resources.
Moreover, in the case of a point cloud, it cannot be used to obtain the
volume unless the surface shapes are connected by post-processing.
Therefore, it is desirable to restore with a mesh representation that
considers the connection from the beginning. Among them, the
method of generating a watertight and self-intersecting mesh is
suitable so that the volume can be easily considered. Moreover, in
this work, the plate parts in the two generated mesh models must
be consistent. In other words, the goal was to design the generated
mesh so that the following conditions were met.

• The generatedmesh iswatertight and contains no self-intersection.
• Consistency exists in the plate parts of the 3D mesh models
of a dish and a plate.

3.1 Representation that meet the requirements
The first condition, the constraint that the output mesh is water-
tight and contains no self-intersection, is very important. Because
when the mesh is watertight and without self-intersection, each
face 𝑓 ∈ 𝐹𝑎𝑐𝑒𝑠 is composed of (𝑣1, 𝑣2, 𝑣3) counter-clockwise when
viewed from the surface of the face. This is because the volume of a
given model, 𝑉 , can be calculated relatively easily by the following
equation:

𝑉 =
∑

𝑓 ∈𝐹𝑎𝑐𝑒𝑠
det

��𝑣1 𝑣2 𝑣3
�� (1)

To fulfill the first condition, it is difficult to use the method using
the template mesh, because it easily causes self-intersection. On
the other hand, the method of extracting meshes using marching
cubes [19, 25, 28, 29] can generate meshes that are watertight and
have no self-intersection. Therefore, it is desirable to use the occu-
pancy or Signed Distance Field (SDF) as the output representation
of the network.

Next, we consider the design for the second condition, the con-
sistent shape of the plate of the two generated meshes. The reason
why this consistency must be taken into consideration is that the
3D data of the actual dish used for training naturally contains noise
and defects, so that the shapes of the dishes often do not match
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Figure 2: The overview of “Hungry Networks.”

perfect. Therefore, in dealing with this problem, we consider which
is better, the occupancy or SDF. Occupancy is the representation,
𝑜 ∈ R, whether it is inside or outside the mesh. SDF is the rep-
resentation, 𝑠 ∈ R, how far away from the surface of the mesh.
The problem with this plate consistency is that the point, 𝑝 ∈ R3,
that was contained inside the plate mesh is not contained inside
the food mesh. In other words, in order to deal with this problem
naturally, it is better to use occupancy. Therefore, in this work, we
propose “Hungry Networks,” which is a network that restores mesh
representation of both a dish and a plate from a single image using
an occupancy-based method based on Occupancy Networks [19].
In addition, we propose a new loss function, 3D shape consistency
loss, so that the plate parts of two estimated mesh-based models
become closer. Note that “a dish” in this paper means a combination
of a plate and foods on the plate as shown in Figure 1.

3.2 Hungry Networks
A schematic diagram of the proposed network, Hungry Networks, is
shown in Figure 2. The network has one encoder and two decoders.

The encoder extracts features of a dish image, which consists of
a pre-trained backbone network such as ResNet. The final output
layer of the encoder is a global average pooling layer to make the
output of the encoder a vector which represents an image feature.
Image features and 3D points, 𝑥 ∈ R3, are used as decoder inputs.
The decoders output the occupancy for a dish (containing a food
part and a plate part) and a plate, respectively. The occupancy
represents if each of 3D point is inside the mesh or outside the
mesh with 1/0 binary values.

In Figure 2, Decoder-1 learns occupancy for generating a 3D
mesh model of a dish, and Decoder-2 learns occupancy for generat-
ing a 3Dmeshmodel of a plate. The generation algorithm is based on
Occupancy Networks [19]. First, we infer the occupancy at the ini-
tial resolution of 32×32×32. Next, the occupancy is inferred again by
increasing the resolution of only the boundary portion of the object
to be generated, and the occupancy of only the boundary portion of
the object is obtained again at higher resolution. In each iteration,
we increase the resolution, divide the grid into eight parts, and in-
crease the resolution as 32×32×32 ⇒ 64×64×64 ⇒ 128×128×128.
Unlike voxel representation, high resolution does not require all
points, and only the boundary portion of the object is gradually
increased in resolution. So memory efficiency is very good. By ap-
plying the marching cubes algorithm [17] to the occupancy field
obtained in high resolution, the iso-surface is extracted as a mesh.
Since this algorithm can always generate a 3D mesh model that
is watertight and has no self-intersection, the first requirement of
generated mesh is achieved.

Table 1: occupancy table
dish occupancy

(𝑓𝑑1 (𝑝))
plate occupancy

(𝑓𝑑2 (𝑝))
𝑓𝑑2 (𝑝) − 𝑓𝑑1 (𝑝)

0 0 0
1 0 -1
0 1 1
1 1 0

3.3 Training
We explain how to train the network. 𝑝 ∈ R3 is the input point,
𝑥 is the feature vector of the input image, and the decoder net-
work for the dish and the plate are represented as 𝑓𝑑1 (𝑥, 𝑝) and
𝑓𝑑2 (𝑥, 𝑝), respectively. In addition, the occupancy of training data
is represented by 𝑜 (𝑝) ∈ R corresponding to the point 𝑝 . Training
of occupancy is equivalent to the binary classification problem of
whether the point is inside or outside the mesh surface. Then, the
loss function for learning the occupancy is represented in Eq.2.
Binary cross entropy loss is used for the loss function because it
results in binary classification.

LO (𝑓𝑑 (𝑥, 𝑝), 𝑜 (𝑝)) = L𝑏𝑐𝑒 (𝑓𝑑 (𝑥, 𝑝), 𝑜 (𝑝)) (2)
Next, we introduce a 3D shape consistency loss to match the

plate parts of both the output mesh models to each other. First, the
possible patterns of the combination of occupancy of the corre-
sponding points on two mesh models are shown in Table 1. When
the occupancy of both models at the corresponding point is the
same, it is in the desirable condition. In addition, the condition
where the occupancy of the dish is 1 and the occupancy of the
plate is 0 is no problem, since such a point corresponds to a part
of the food part of the dish model. On the other hand, the condi-
tion where the occupancy of the dish is 0 and the occupancy of
the plate is 1 is problematic, since this means that inconsistency
happens between the plate model and the dish model, which should
be resolved. Penalties were applied during training only if the dish
occupancy is 0 and the plate occupancy is 1, which corresponds to
the condition where 𝑓𝑑2 (𝑝) − 𝑓𝑑1 (𝑝) equals 1 as shown in Table 1.
So,max(𝑓𝑑2 (𝑝) − 𝑓𝑑1 (𝑝), 0) is used as a loss function to be minimize.
We will call this “3D shape consistency loss” (hereinafter, this is
called “3D consistency loss”).

LC (𝑓𝑑1 (𝑝), 𝑓𝑑2 (𝑝)) = max(𝑓𝑑2 (𝑝) − 𝑓𝑑1 (𝑝) , 0) (3)
The above two formulas (Eq.2, Eq.3) are put together to determine

the loss LB for each mini-batch of the entire learning. Here, B is
the sampled mini-batch, 𝐼𝑖 is the 𝑖-th image of the batch, and 𝐾
points in total from the 𝑖-th batch are sampled, and 𝑝𝑖, 𝑗 represents
the sampled 𝑗-th point of the 𝑖-th image. It is assumed that 𝑓𝑒 is the
encoder that output image features, and 𝑓𝑑1 and 𝑓𝑑2 are decoder
outputs that output food and plate occupancy rates, respectively.

𝑥𝑖 = 𝑓𝑒 (𝐼𝑖 ) (4)
𝑦1𝑖, 𝑗 = 𝑓𝑑1 (𝑥𝑖 , 𝑝𝑖, 𝑗 ) (5)
𝑦2𝑖, 𝑗 = 𝑓𝑑2 (𝑥𝑖 , 𝑝𝑖, 𝑗 ) (6)

LB =
1
|B|

|B |∑
𝑖=1

𝐾∑
𝑗=1

(
𝜆1LO (𝑦1𝑖, 𝑗 , 𝑜1𝑖 (𝑝𝑖, 𝑗 ))

+ 𝜆2LO (𝑦2𝑖, 𝑗 , 𝑜2𝑖 (𝑝𝑖, 𝑗 ))

+ 𝜆3LC (𝑦1𝑖, 𝑗 , 𝑦2𝑖, 𝑗 )
)

(7)
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4 DATASET CONSTRUCTION
Some existing dietary datasets contain color and depth images [11].
However, no dietary dataset contains 3D Mesh models of foods.
Therefore, for this work, we had to create a new 3D dietary dataset.
We created the dataset consisting of 240 3D models of foods and
38 models of plates. To create the models, we used a commercially
available 3D sensor called “Structure Sensor” and a dedicated 3D
scanning application. Since the same plate was used for different
dishes, the number of plate models is smaller than that of dish
models.

4.1 Steps to make scanned data learnable
Many 3D model datasets, which are often used for training neural
networks in recent years, are basically composed of data created by
humans using 3D modeling software. However, the dataset created
for learning in this work was constructed by scanning a real object
with a commercially available 3D scanner. Since the mesh output by
the scanner contains noise and defects, it cannot be used as it is for
training of neural networks. Therefore, some pre-processings are
needed to perform to make the scanned models ready for training.
Additionally, in this work, unless the two models of food and plate
are fitted, the 3D consistency loss, which is premised on comparing
the occupancy rates at the same coordinates, cannot be used. There
are five problems with the 3D models created by scanning.

(1) The center of the model does not coincide with the origin.
(2) Not watertight.
(3) The size is not unified.
(4) Containing noise.
(5) The coordinates of the plate parts of a dish mesh and a

corresponding plate mesh do not match to each other.
4.1.1 Aligning 3D models to the origin. Scanned models were lo-
cated anywhere in the 3D space, and the locations are not unified.
Then, first, we move to all the 3D models so that the center of the
model is aligned to the origin of the 3D space.
4.1.2 Complementing mesh defects. Since the network used in this
work is designed to infer the occupancy, all the 3D model should be
watertight. However, the scanned models sometime have holes as
shown in the left column of Figure 3. We have to complementing
holes to make the models watertight.

There exist several algorithms to fill the perforated model [2, 14,
15]. In this work, we use Poisson Surface Reconstruction [14, 15].
However, this algorithm cannot be applied to the model as it is.
Figure 3 shows the results when the Poisson Surface Reconstruction
is applied to the scanned 3D model as it is. If the defects present in
the model are small to some extent, the surface is complemented
relatively neatly on Figure 3. However, as shown at the bottom
of Figure 3, there were many models whose surfaces were not
complemented as expected. The main expected reason why Poisson
Surface Reconstruction does not create the surface is that the mesh
deficiency is too large. This is because the scanned 3Dmodel cannot
scan the surface in contact with the floor. Therefore, before applying
Poisson Surface Reconstruction, we created and applied an simple
algorithm to fill the holes in the ground plane to some extent to fill
the holes. After filling in the defects on the surface of the model,
the size of the model was normalized to -0.5 to 0.5 and the size was
unified.
4.1.3 Removing noise. Next, we address the issue of noise remain-
ing in the model. Such noise was dealt with by reconfiguring the

Figure 3: Poisson surface as a result of reconstruction. Al-
though small holes in the ground plane are complemented
well, large holes are not complemented correctly.

Figure 4: Use ICP (Iterative Closest Point) to match the coor-
dinates of the plate part of the dish and the plate mesh.

mesh again using TSDF Fusion. TSDF Fusion refers to a part of the
method proposed by Kinect Fusion [23]. Using this method, the
noise inside the model was completely removed.

4.1.4 Fitting. Finally, we align the plate parts of the two mesh
models, a dish mesh model (containing both food and plate parts)
and a plate mesh model (containing only a plate part). In the 3D con-
sistency loss, we assumed that the plate parts of the corresponding
dish and plate models are aligned. Therefore, we use ICP (Iterative
Closest Point) to fit the dish and plate as shown in Figure 4.

4.2 Generating input images by rendering
In this work, we rendered images for learning using software called
blender, similar to 3DR2N2 [4]. 25 images were rendered for each
model, taken from various angles. The images created by 3DR2N2
only shows only the models, and they contain no background.
However, food photos taken in actual situations always contain
backgrounds. In this work, we collected textures of various types
of tables and tablecloths from the Web as the background of the
rendered dish images, and created composite images. Figure 5 shows
the image created by rendering. The top two lines are just rendered,
and the bottom two lines are a composite of the background.

5 EXPERIMENTS
We made experiments with the proposed model, “Hungry Net-
works”, on the following conditions: (1) we set three values as the
3D consistency loss weight (𝜆3 in Eq.7), (2) we use three different
backbone networks, and (3) we train the model with rendered dish
images with/without backgrounds. To train the proposed network,
we used 216models for training and 24models for evaluation among
240 models in the constructed dataset. The hyperparameters, 𝜆1, 𝜆2,
were fixed at 1, and only 𝜆3 was changed in the experiments. We
used Adam as an optimizer.
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Figure 5: Images rendered for training without/with back-
grounds.

5.1 Metrics
For quantitative evaluation, we use Volumetric IoU, Chamber L1 dis-
tance, plate consistency, and volume error. Volume error is the most
important in this work, since it directly connected to estimation of
food calorie amounts.

Volume IoU is defined as the quotient of the union volume be-
tween the estimated mesh and the ground-truth mesh and the
volume of their intersection. It is calculated by randomly sampling
100,000 points from the inside of the bounding box of the mesh and
inferring whether the points are inside or outside.

Chamfer L1 distance is calculated from the average of the two
indicators. One is the mean distance from points on the generated
mesh to the nearest neighbor points on the ground-truth mesh. The
other is opposite. 100,000 points were sampled from the surface of
each mesh, and the nearest neighbor points were searched using
KD-Tree as the previous works [9, 19].

The plate consistency is the mean distance from points on the
generated plate mesh to the nearest neighbor points on the gener-
ated food mesh. This value indicates how different the plate part of
the dish volume is from the plate volume.

The food volume is obtained by subtracting the plate volume
from the dish volume. To evaluate estimation of the food volume,
we calculate ground-truth food volumes by removing the plate
parts from the corresponding dish mesh manually. Since it is very
time-consuming, we created ground-truth 3D food mesh models
on only 24 evaluation models. Volume error is the mean distance
from the inferred volume of the food region to the ground-truth
food volume.

On IoU, the higher value is better, while on the other metrics,
the Chamfer L1 distance, plate consistency and the volume error,
the lower values are better.

5.2 Quantitative evaluation
First, we investigated the effect of 𝜆3 on evaluation. The encoder
was based on ResNet34, and training images without backgrounds
were used for training and evaluation. We made experiments with
0, 20 and 50 for 𝜆3. Note that 0 means we did not used the 3D
consistency loss. The results are shown in Table 2. As a result, it
indicates that the volume error is greatly reduced when 3D shape
consistency loss is used. On the other hand, the 3D meshes of
dishes and plates were estimated the most accurately without the

Figure 6: The estimated volumes of both dishes and plates
with the model trained from non-background images with
a ResNet18-based encoder and 𝜆3 = 20.

3D consistency loss. However, as shown in Figure 7, in case of no
3D consistency loss invisible parts of the dish volume and the plate
volume were differently reconstructed. Since both the dish decoder
and the plate decoder were optimized independently using only
independent occupancy loss functions to each other, individual
evaluation tends to become better and integrated evaluation such
as volume error tends to become worse.

Table 3 shows the results using different backbone networks,
ResNet18, ResNet34, and ResNet50 using non-background images
and 𝜆3 = 20, which achieved the most accurate estimation regard-
ing food volume error in the previous experiments. As a result,
ResNet50 was the most accurate in food volume error, although the
difference between ResNet18 and ResNet50 was very small.

In the next experiments, we evaluated how much accuracy was
affected by backgrounds of training images. We used 𝜆3 = 20 with
ResNet18 and ResNet50 as backbones. With backgrounds in the
training images, we achieved the best results regarding the volume
error and the plate consistency.

5.3 Qualitative evaluation
Figure 6 shows the estimated 3D meshes of both dishes and plates
with 𝜆3 = 20, ResNet18 and training images without background.
The 3D meshes of both the dishes and the plates were correctly
estimated for the corresponding images. Although the input images
contained foods, the plate decoder, which was trained with only
3D plate models, estimated only the plate parts. In addition, we can
see that most of the plate parts of the dish meshes were identical
to the plate meshes.

Figure 7 shows comparative results between the results with the
3D consistency loss and the ones without the 3D consistency loss.
In case of no plate consistency loss, the reconstructed 3D shapes
of dishes and plates are different from each other, especially on
the invisible parts such as the bottom parts of the plates from the
input images. This mainly comes from the nature of the training
3D data. The scanned 3D mesh data is prone to noise and defects
in the parts in contact with the grounds. Therefore, when viewed
from the bottom, the results of generating two volumes may differ
significantly. On the other hands, when the 3D consistency loss
was used, it can be seen that the plate parts were consistent in both
volumes.

Figure 1 shows the results with real food photos as input im-
ages in the same training condition as the previous experiments.
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Table 2: The evaluation results with three kinds of 𝜆3 using ResNet34 and non-background images.
𝜆3 IoU (dish) IoU (plate) Chamfer

L1 (dish)
Chamfer
L1 (plate)

plate
consistency volume error

0 0.624 0.621 0.0189 0.0186 0.0256 0.0252
20 0.550 0.607 0.0262 0.0182 0.0168 0.0155
50 0.542 0.610 0.0260 0.0209 0.0152 0.0161

Table 3: The evaluation results with three kinds of backbones, ResNet18, ResNet34, and ResNet50 with 𝜆3 = 20 and non-
background images.

encoder IoU
(dish)

IoU
(plate)

Chamfer
L1 (dish)

Chamfer
L1 (plate)

Plate
consistency

score
Volume error

ResNet 18 0.560 0.634 0.0265 0.0193 0.0146 0.0150
ResNet 34 0.550 0.607 0.0262 0.0182 0.0168 0.0155
ResNet 50 0.564 0.617 0.0251 0.0186 0.0148 0.0147

Table 4: The evaluation results with training images with/without backgrounds with 𝜆3 = 20 and ResNet18/50 backbones.

encoder background IoU
(dish)

IoU
(plate)

Chamfer
L1 (dish)

Chamfer
L1 (plate)

Plate
consistency

score
Volume error

ResNet 18 none 0.560 0.634 0.0265 0.0193 0.0146 0.0150
ResNet 50 none 0.564 0.617 0.0251 0.0186 0.0148 0.0147
ResNet 18 yes 0.565 0.645 0.0254 0.0173 0.0146 0.0146
ResNet 50 yes 0.558 0.628 0.0252 0.0173 0.0157 0.0157

Figure 7: Comparative results with/without the 3D consis-
tency loss. Note that training condition is the same as Fig.6.

Although real images of actual foods were not used for network
training, the trained model was able to reconstruct 3D volumes of
the dishes and the plates. Various kinds of the plates such as square
flat plates, rectangular plates, round flat plates, and bowls were
successfully reconstructed, although the shape and the height of
each of the plates were different greatly.

5.4 Discussion on 3D shape consistency loss
We found that introducing 3D shape consistency loss brought both
advantages and disadvantages. The disadvantage is that evaluation
using a general evaluation metrics on each of the dish and the plate
such as Chamfer distance will be worse. This is because 3D shape
consistency loss is not a loss to become closer to ground-truth. The
advantage is that it can absorb the noise of the mesh generated by
the 3D scanner. Since the dataset was created using an inexpen-
sive 3D scanner, it inevitably contains noise such as defects and
swelling. Data sets such as ShapeNet are models carefully created by
humans using 3D modeling software and were very well-organized.
However, this is not the case when creating 3D real object datasets
using a 3D scanner. Therefore, the dishes and the corresponding

plates, which should contain the same plate, contain slightly differ-
ent shapes due to the accuracy of the scanner. Even if the volume
size of the plate model is subtracted from the volume size of the
dish model in order to obtain the volume size of the food portion,
it will not become idential to the volume size of the actual foods
due to the noise of the plate portion. Therefore, by introducing 3D
shape consistency loss and matching the plate shapes, the accuracy
of calculating of the 3D volume size has improved.

6 CONCLUSIONS
In this work, we proposed “Hungry Networks” that enabled 3D
shape reconstruction of dishes and plates from a single food image.
For training, we introduced a new loss, 3D shape consistency loss,
in order to maintain the consistency between the plate part of the
dish and the plate. In addition, for experiments, we created a dataset
consisting of 3D mesh models of dishes. By the experiments, it was
shown that 3D shapes could be reconstructed with high accuracy
by using rendered images of dishes and composite rendered images
of backgrounds for training. In addition, by introducing 3D shape
consistency loss, we succeeded in maintaining and restoring the
consistency of the plate parts of the two meshes, which contributed
to the estimation of the volume of the dietary area. It was shown that
the network learned from the dish images obtained by synthesizing
the background image can be correctly reconstructed even if the
real dish image is input as well.

As a future task, the current 3D shape restoration is performed
in a normalized space, and the actual size cannot be taken into
consideration. In order to estimate the amount of calories, it is
necessary to be able to consider the actual size. Therefore, we
would like to use the environment recognition function of the AR
device, RGB-D depth images, reference objects and so on to perform
3D shape restoration considering the actual size, which will lead to
accurate estimation of the amounts of food calorie intake.
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