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ABSTRACT
Nowadays, cooking recipe sharing sites on theWeb are widely used,
and play a major role in everyday home cooking. Since cooking
recipes consist of dish photos and recipe texts, cross-modal recipe
search is being actively explored. To enable cross-modal search,
both food image features and cooking text recipe features are em-
bedded into the same shared space in general. However, in most of
the existing studies, a one-to-one correspondence between a recipe
text and a dish image in the embedding space is assumed, although
an unlimited number of photos with different serving styles and
different plates can be associated with the same recipe.

In this paper, we propose a RDE-GAN (Recipe Disentangled
Embedding GAN) which separates food image information into a
recipe image feature and a non-recipe shape feature. In addition,
we generate a food image by integrating both the recipe embedding
and a shape feature. Since the proposed embedding is free from
serving and plate styles which are unrelated to cooking recipes,
the experimental results showed that it outperformed the existing
methods on cross-modal recipe search. We also confirmed that only
either shape or recipe elements can be changed at the time of food
image generation.
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1 INTRODUCTION
In these days, cooking recipe sharing sites on the Web, such as
Allrecipes and CookPad, are widely used and play a major role in
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Figure 1: The overview of Recipe Disentangled Embedding
GAN (RDE-GAN), where image features are disentangled
into a recipe image embedding and a dish shape feature
to confirm that the recipe embedding contains only recipe-
related information.

everyday home cooking, since people can search the huge cooking
recipe database and get recipe recommendations easily. In addition,
any users can post their cooking recipes described in texts and
corresponding food photos to the services. So that there are a large
number of recipes on the service, and efficient search methods are
required such as cross-modal recipe search where text recipes can
be searched for from food images and vice versa.

The format of recipe information including texts and images
are unified within the same service. Thus, it is easy to collect a
large number of pairs of recipe texts and images. The Recipe1M
dataset [17, 22] was build by collecting recipe data from 12 cooking
recipe sites, containing ingredients and cooking instructions both
of which are textual recipe information, and corresponding food
photos as visual recipe information. With the advent of this large-
scale multi-modal recipe dataset, multi-modal learning of recipe
information has become a hot research topic. The Joint Embed-
ding [22] and AdaMine [1] encoded both visual features and textual
features of recipe information in the shared space byminimizing the
consine distance between them. More recent works, R2GAN [30]
and ACME [25], did not only extract embedding vectors but also
generated food images from either visual or textual embedding
vectors. This helped make the embbedings more informative and
improved the accuracy of cross-model recipe search.

However, in all the above-mentioned existing works, they as-
sumed that one dish photo corresponded to one recipe text directly
without taking into account the difference of the dish appearances
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which come from the difference of serving styles, plates, viewpoints
and lighting conditions. In fact, an unlimited number of food photos
corresponding to one certain recipe are possible. Textual recipe
information contains the visual information only based on ingredi-
ents and cooking styles, and does not contain the information on
serving styles, plate shapes and photographing conditions. There-
fore, we believe that visual recipe embeddings should not contain
such information related to non-recipe factors.

Therefore, in this paper, we propose to disentangle recipe in-
formation from non-recipe information, and take account of only
recipe information when encoding a dish image into a recipe embed-
ding vector. We expect to improve the performance of cross-modal
recipe search by excluding non-recipe information from recipe
embeddings.

In this work, as shown in Figure 1, we propose a RDE-GAN
(Recipe Disentangled Embedding GAN), which extracts visual and
textual cross-modal embeddings for cross-modal search with disen-
tanglement of an image feature into recipe and non-recipe infor-
mation. RDE-GAN encodes a dish image into two kinds of features,
“a visual recipe embedding” and “a dish shape feature.” A visual
recipe embedding contains recipe information of the dish in the
given image, and can be used for cross-modal recipe search, while
a dish shape feature contains non-recipe information, which is not
used for recipe search. Note that in this paper the visual feature
containing only non-recipe information is called “a dish shape fea-
ture” for simplicity, although it contains non-recipe information
on not only plate shapes but also serving styles, serving amounts,
photographing conditions and so on.

As a by-product, we can generate a food image by integrating
a recipe embedding and a dish shape feature, which allows us to
control the shape of a dish in the generated image. In fact, we can
synthesis food images with different recipes on the fixed-shape dish.
In addition, since both visual and textual recipe embeddings are em-
bedded in the same share space and interchangeable to each other,
we can synthesis food images by combining a textual recipe embed-
ding and a dish shape feature as well. Such food image synthesis
can be performed only by the RDE-GAN.

With extensive experiments, we show that our approach is effec-
tive and outperforms the existing methods for most of the tasks on
cross-modal recipe retrieval. In addition, we show that we achieve
new style recipe image generation by integrating recipe embed-
dings and dish shape features. To summarize it, the contributions
of this paper are as follows:

1. We propose to disentangle a recipe image into recipe in-
formation and non-recipe information, and use only recipe
information to generate visual recipe embeddings. This is the
first work of cross-modal recipe embedding which introduces
feature disentanglement as long as we know.

2. We propose to generate food images by integrating either a
visual or textual recipe embedding which contains only recipe
information and a dish shape feature which contains only
non-recipe information.

3. We have confirmed the effectiveness of our method by outper-
forming the existing methods regarding cross-modal recipe
search with the Recipe1M dataset [17, 22].

4. We also have confirmed that we can generate novel dish
images by integrating a recipe embedding and a dish shape
feature extracted from arbitrary food photos and/or recipe
texts.

2 RELATEDWORK
2.1 Cross-Modal Recipe Retrieval
Recently, cross-modal recipe search has been paid much atten-
tion, since cooking recipe Web sites have become very common,
and it can be regarded as one of practical applications of multi-
modal retrieval. The large-scale open recipe multi-modal dataset,
Recipe1M [17, 22], has facilitated works on cross-modal recipe
search. This dataset contains one million of English cooking recipes
each of which consists of both textual information (a title, an in-
gredients list, and a cooking procedure) and visual information
(photos of the cooked foods). In addition, all the recipes have one
of 1,047 food categories assigned by the authors, and 4,102 kinds of
highly-frequent ingredients are identified as well.

The recipe1M dataset was originally proposed for the first work
on cross-model recipe retrieval by the same authors [22]. The au-
thors proposed an image-text cross-modal recipe retrieval method
in which both visual features extracted from food photos and tex-
tual features extracted from recipe texts are embedded to the shared
space. This method is called as Joint Embedding (JE), which showed
that it was possible to perform a search beyond the modalities by
optimizing the cosine similarity in the shared space.

AdaMine [1] improved retrieval accuracy by learning the shared
space using a triplet loss in which a positive pair and a negative
pair were taken into account at the same time, while JE adopted
a pair-wise loss. Moreover, Adamine introduced selection of hard
samples [8] during creation of triplets.

R2GAN [30] and ACME [25] introduced GAN-based image gener-
ation in addition to triplet-based joint embedding. R2GAN proposed
two-level triplet ranking loss inwhich triplet was taken into account
not only in the shared embedding space but also in the generated
image space. In the generated image space, a reconstruct loss was
also introduced so that generated images and input dish images
become identical. As a result, cross-modal search performance was
improved. However, R2GAN intended to improve search perfor-
mance by introducing image generation rather than to generate
high-quality dish images. In fact, they generated 64×64 images, and
did not evaluate generated images with quantitative scores such as
Fréchet Inception Distance (FID), while ACME [25] and our model
generates 128 × 128 images with the evaluation by FID scores.

ACME [25] performed a reconstruction of ingredients and title
category from a visual embedding as well as a recipe image from a
textual embedding. ACME adopted adversarial cross-modal train-
ing [24] so that a visual embedding made from a recipe image and a
textual embedding made from a recipe text cannot be distinguished
to each other. The other basic parts are the same as AdaMine [1]
and R2GAN [30].

R2GAN [30] and ACME [25] generated food images from only
textual recipe embeddings, although recipe texts do not include
non-recipe information such as dish shapes and serving styles in
general. We expect that this is harmful on the performance of both
cross-modal recipe search and food image synthesis. To resolve
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this problem, we newly introduce feature disentangle of recipe
information and non-recipe information in a visual encoder part,
and generate food images by integrating both a recipe embedding
and a dish shape feature. We prove that this new idea improves the
performance on both cross-modal recipe retrieval and food image
synthesis by the experiments.

The two recentworks on cross-modal recipe embeddings,MCEN [3]
and Zan et al. [27], focused on improving embeddings without using
image generation. MCEN [3] introduced cross-modal attention and
consistency to improve recipe retrieval performance. Zan et al. [27]
introduced attention mechanishm to exclude noise information in
food images for reducing the negative effects. In addition, they used
BERT [2] as a text encoder. The directions of their approaches on
improvements are different from ours. We will integrate these ideas
with our framework for future work.

2.2 Feature Disentanglement
Feature disentanglement has been studied for the problem of un-
interpretability of latent space in image generation by separating
semantic and shape features of an image.

In DRIT [15], a content encoder and a shape encoder were pre-
pared for separation of contents and shapes, and they extracted
content features and shape features from an image. By replacing
one of the features with one extracted from another input image,
they generated an image and encoded it again with the two en-
coders. Then, the encoders and the generator were trained so that
the extracted features become identical to the features provided to
the generator.

In MUNIT [12], the network architecture which is based on the
arbitrary style transfer network [11] is very unique, although the
way of disentanglement training is similar to DRIT. In MUNIT, a
global average pooling layer was used to squash spatial features
for extracting style features, and style features are injected into
a decoder network using Adaptive Instance Normalization Layer
(AdaIN) [11]. Image reconstruction was performed based on both
content features and style features.

In both the methods, independent encoders were used for en-
coding of contents and shapes, and they were trained so that the
features obtained by re-encoding of a generated image become
close to the original encoded features. Regarding feature disentan-
glement, our work was inspired by DRIT [15] and MUNIT [12].
Our work follows their basic idea of feature disentanglement on
contents and shapes.

2.3 Food Image Synthesis
Recently, GAN-based food image generation has been explored.
In some works [10, 13], food images were generated by condi-
tional GANs [18] being controlled with food category conditions.
The GANs were also used in the two existing cross-modal embed-
ding methods, R2GAN [30] and ACME [25], in which they used
cGAN [18] to generate corresponding dish images from either the
visual recipe embedding or the textual recipe embedding. In addi-
tion, ACME used WGAN-GP [5] to make it indistinguishable if the
embedding derived from a recipe image or a recipe text. For image
generation in our work we use cGAN and LSGAN, and we also use
WGAN-GP for training embedding by following [24].

Figure 2: The architecture of RDE-GAN (Recipe Disentan-
gled Embedding GAN), which consists of a recipe text en-
coder, 𝐸𝑇 , a recipe image encoder, 𝐸𝑉 , the shared fully-
connected (FC) layer, FC, a dish shape encoder, 𝐸𝑆 , and an
image generator, 𝐺 .

Recently, food image synthesis from recipe texts has been pro-
posed. CookGAN [29] proposed a cooking simulator sub-network
to incrementally change food images based on the interaction be-
tween ingredients and cooking methods. The other CookGAN [6]
and ChefGAN [20] are similar to each other, which used joint image-
recipe embeddings to control the cascaded image generationmodule
based on StackGAN [28]. These works focused on high quality food
image synthesis, while the main objective of our work is obtaining
cross-modal recipe embeddings for recipe search, and food image
synthesis is a by-product. In addition, they cannot control the shape
of generated food images unlike our method, since they did not
adopt feature disentanglement of recipe features and dish shape
features.

3 PROPOSED METHOD
3.1 Overview
Figure 2 shows the basic architecture of the proposed model, RDE-
GAN (Recipe Disentangled Embedding GAN). Although we follow
ACME [25] regarding the basic structure, the biggest difference
is that we disentangle recipe image features and dish shape fea-
tures to exclude non-recipe information such as serving and plate
styles from recipe embeddings. Therefore, our architecture has two
kinds of image encoders, a recipe image encoder for extracting
recipe factors from a given dish image and a dish shape encoder
for extracting non-recipe factors.

As shown in Figure 2, the main elements of the network are
a recipe text encoder, 𝐸𝑇 , a recipe image encoder, 𝐸𝑉 , the shared
fully-connected (FC) layer, FC, a dish shape encoder, 𝐸𝑆 , and an
image generator, 𝐺 . Textual embedding, 𝑇 = FC(𝐸𝑇 (t)), and visual
embedding, 𝑉 = FC(𝐸𝑉 (i)), are obtained in the same shared em-
bedding space, which enables cross-modal recipe search. Note that
t and i represents a recipe text and a recipe image, respectively.
𝑇 and 𝑉 are trained with triplet ranking loss in the same way as
AdaMine [1] and ACME [25]. In addition, a recipe category classifier
and a multi-label ingredient classifier are used for training. Follow-
ing [24] and [25], we adopt adversarial cross-modal training with a
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Figure 3: Two-stage training of the image encoders. (a) The
first stage: 𝐸 (1𝑠𝑡 )

𝑆
is a simple down-sampling network and

a dish shape feature is a vector. (b) The second stage: The
part of 𝐸𝑆 and 𝐺 (marked with blue dotted boxes) are re-
placed with an encoder which outputs a shape feature map
and an AdaIN-style image generator, respectively, while 𝐸𝑉
(markedwith a red dotted box) is frozenwith the parameters
trained in the first stage.

modal discriminator, 𝐷𝑀 , to make the distributions of outputs of
𝐸𝑇 and 𝐸𝑉 closer. The dish shape encoder, 𝐸𝑆 , encodes non-recipe
information as a dish shape feature, 𝑆 , from a recipe image. For
generating recipe images, a generator,𝐺 , takes either a text-based
embedding, 𝑇 , or an image-based embedding, 𝑉 , with a dish shape
feature, 𝑆 , as inputs, and outputs a synthesized image taking ac-
count of both recipe information and non-recipe information by
adversarial training with an image discriminator, 𝐷 .

In our method, we train image encoders in two stages to make
training process more stable. Figure 3 shows two training stages, (a)
the first stage and (b) the second stage, on the part of a recipe image
encoder, 𝐸𝑉 , a dish shape encoder, 𝐸𝑆 , and a generator,𝐺 . Note that
a recipe text encoder, 𝐸𝑇 , is trained in the first stage although it is
not shown in this figure.

In the first stage, we mainly focus on training the embedding
part of the whole network. To do that, we adopt a simple network
for 𝐸𝑆 and 𝐺 . In the second stage, we focus on training the image
synthesis part. We replace 𝐸𝑆 and 𝐺 with richer networks and
re-train them with the trained embedding part frozen. Since the
networks of 𝐸𝑆 and𝐺 are changed from the first stage to the second
stage, we represent 𝐸𝑆 and𝐺 trained in the first stage as 𝐸 (1𝑠𝑡 )

𝑆
and

𝐺 (1𝑠𝑡 ) , respectively.

3.2 Cross-Modal Embeddings
A textual embedding, 𝑇 , and a visual embedding, 𝑉 , in the shared
space are estimated in the same way as ACME [25]. First, we en-
code both a recipe image and a recipe text to 1024-dimensional
semantic vectors with a recipe text encoder, 𝐸𝑇 , and a recipe image
encoder, 𝐸𝑉 . The text encoder, 𝐸𝑇 , consists of a bi-directional LSTM
encoding ingredients lists, hierarchical LSTMs encoding cooking

instructions and a FC layer which integrates the outputs of two
kinds of LSTM-based encoders, which are basically the same as
that of Joint Embedding (JE) [22]. For image encoding, we use a
ResNet50 [7] pre-trained with ImageNet after replacing the final
FC layer with a new FC layer as a recipe image encoder, 𝐸𝑉 . We
embed the two encoded semantic vectors into the shared space by
passing through the same fully-connected layer, FC, by following
ACME and CM-GANs [21].

To train the embedding part, we use three kinds of the loss
functions: (1) distance learning loss, (2) modality adversarial loss,
and (3) classification loss.

3.2.1 Triplet-based Distance Learning Loss. Distance learning on
embeddings is performed by triplet learning [8] with hard samples
as in ACME [25]. For a certain pair of textual recipe embeddings
and visual embeddings, the corresponding ones are assumed to be
positive samples and the ones that do not correspond to each other
are assumed to be negative. We select hard ones to separate from
many negative samples to perform effective distance learning.

In the triplet learning [23, 26], we take one anchor sample from
a training set, select positive one and negative one to the anchor
sample, and train the embedding function so that the difference
between the distance from the anchor to the negative one and the
distance from the anchor to the positive one becomes more than
the pre-defined margin.

The triplet learning in the cross-modal embedding takes an an-
chor and its positive/negative samples from the different modal-
ity. We take one anchor from visual embeddings, 𝑉𝑎 , and posi-
tive/negative samples from textual embeddings,𝑇𝑝 ,𝑇𝑛 . At the same
time, we take a textual anchor, 𝑇𝑎 , and positive/negative visual
samples, 𝑉𝑝 ,𝑉𝑛 , as well. The triplet loss function with the cosine
distance 𝑑 is as follows:

L𝑇𝑟𝑖 =
∑
𝑉

[𝑑 (𝑉𝑎,𝑇𝑝 ) − 𝑑 (𝑉𝑎,𝑇𝑛) + 𝛼]+

+
∑
𝑇

[𝑑 (𝑇𝑎,𝑉𝑝 ) − 𝑑 (𝑇𝑎,𝑉𝑛) + 𝛼]+

where [𝑧]+ = max(𝑧, 0). (1)

3.2.2 Modality Adversarial Loss. We prepare a discriminator 𝐷𝑀

that discriminates whether embeddings in the shared space come
from textual or visual modality, and then we perform adversarial
training so that the discriminator cannot discriminate. As a result,
the distributions of visual embeddings and textual embeddings are
expected to become close to each other. This idea was originally
proposed in [24], and ACME adopted it. We use WGAN-GP [5] to
perform this adversarial training to prevent mode collapse. The
modality adversarial loss can be expressed as follows:

L𝑀𝐴 =Ei∼𝑝 (i) [log𝐷𝑀 (𝐸𝑉 (i))]+
Et∼𝑝 (t) [log(1 − 𝐷𝑀 (𝐸𝑇 (t)))],

(2)

where i, t, 𝑝 (i) and 𝑝 (t) represent a recipe image, the corresponding
recipe text, the distribution of image samples, and the distribution
of recipe text samples, respectively.

3.2.3 Classification Loss on Recipe Labels and Ingredients. Both
textual and visual embedding vectors should have recipe informa-
tion. To confirm it, classification loss on recipe title category and
ingredients is introduced. Since each recipe in the Recipe1M dateset
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has one of 1,047 class labels assigned by hand based on recipe titles,
we classify both embeddings into one of 1,047 recipe categories.
In addition, we estimate 4,102-d ingredient vectors from them as
multi-label classification. We minimize the following loss function
with cross-entropy losses by a title classifier and an ingredient
classifier, which are represented as L𝑇𝑖𝑡𝑙𝑒 and L𝐼𝑛𝑔𝑟 :

L𝐶𝑙𝑎𝑠𝑠 = L𝑇𝑖𝑡𝑙𝑒 (𝑉 , 𝑙𝑇 ) + L𝑇𝑖𝑡𝑙𝑒 (𝑇, 𝑙𝑇 )
+L𝐼𝑛𝑔𝑟 (𝑉 , 𝑙𝐼 ) + L𝐼𝑛𝑔𝑟 (𝑇, 𝑙𝐼 ), (3)

where 𝑙𝑇 and 𝑙𝐼 represent a groundtruth food category label and a
groundtruth ingredient vector, respectively.

3.3 Food Image Synthesis
In the existing works such as ACME and R2GAN, food images
are generated from only recipe embeddings, while in our work
we disentangle recipe information from non-recipe information,
embed only recipe information into recipe embeddings and encode
non-recipe information into a dish shape feature. To generate food
images, we use both recipe embeddings and dish shape features.
This is the biggest difference to the existing methods.

As explained in Section 3.1, the image generator part is trained
in two stages. As shown in Figure 3, in (a) the first stage, we use a
vector representation for a shape feature, while in (b) the second
stage, we use a feature map representation for a shape feature.
The reason why we adopted two-stage training is that a shape
map feature has too strong representation power which makes it
difficult to separate recipe information and non-recipe information
using an image recipe encoder, 𝐸𝑉 , and a dish shape encoder, 𝐸𝑆 ,
appropriately. In fact, when using a shape map feature from the
beginning of the training process, the trained image generator
generated dish images only from shapemap features ignoring recipe
embeddings. We encountered this problem in the early stage of this
work. So we intend to focus on training recipe embeddings in the
first stage, and in the second stage we focus on training an image
generator and a dish shape encoder. The detail will be explained
later in this subsection, and the requirement of two-step training
will be validated in the section on ablation studies.

In this subsection, we describe the network of each of the two
stages, and two kinds of losses, (1) adversarial loss and (2) disen-
tanglement loss, to train the image synthesis part.

3.3.1 Image Synthesis in First Stage. In the first stage, as shown
in Figure 3(a), we adopt a simple network for an initial dish shape
encoder, 𝐸 (1𝑠𝑡 )

𝑆
, and a dish image generator, 𝐺 (1𝑠𝑡 ) since we focus

on training of the embedding part. We use a 1024-d dish shape
vector in the first stage, which is the same dimension as recipe
embeddings.

𝐸
(1𝑠𝑡 )
𝑆

consists of one 7x7 convolutional layer (conv), four 3x3
convs with stride 2, a global average pooling layer (GAP) and one
FC, while𝐺 (1𝑠𝑡 ) consists of one FC, five pairs of a nearest-neighbor
up-sampling layer and a 3x3 conv, and a hyperbolic tangent func-
tion (tanh). Since the first-stage shape encoder has a GAP layer
which squashes spatial information, this encoder is not enough to
reconstruct a recipe image accurately. So that in the second stage we
replace it with the final shape encoder which outputs an 8x8x1024
feature-map-style feature.

3.3.2 Image Synthesis in Second Stage. In the second stage, we
focus on training of the image synthesis part, assuming that both
the visual and textual embedding encoders are trained successfully
in the first stage. Therefore, all the networks except for the image
synthesis part (𝐸𝑆 and𝐺) are frozen with the parameters trained in
the first stage.

The purpose of this stage is to improve the quality of image gen-
eration and the ability of image manipulation by controlling recipe
embeddings and shape features. To do that, as shown in Figure 3(b),
we discard the initial shape encoder, 𝐸 (1𝑠𝑡 )

𝑆
, and the initial image

generator, 𝐺 (1𝑠𝑡 ) , and import the final dish shape encoder, 𝐸𝑆 and
the final image generator, 𝐺 . As model architectures of 𝐸𝑆 and 𝐺
in the second stage, we use the Content Encoder in MUNIT [12] as
a dish shape encoder, and the Decoder in MUNIT as a recipe image
generator. The dish shape encoder outputs a 8x8x1024 feature-map-
style feature as a dish shape feature. The recipe image generator
uses an Adaptive Instance Normalization layer (AdaIN) [11] to con-
trol the style of generated images with a style code. Since AdaIN
is used in the state-of-the-art GAN, StyleGAN [14], as well, high-
quality images are expected to be generated. In MUNIT, a style
code extracted by the Style Encoder was provided directly to the
Decoder. Instead in our model we regard a recipe embedding in
the shared embedding space as a style code. Since our model is
a cross-model embedding model, both visual and textual recipe
embeddings can be used as a style code which controls recipe infor-
mation of the food images generated by the image generator. Note
that the size of synthesized images is 128x128, which is the same
size as ACME [25].

3.3.3 Adversarial Loss. For training of a generator, we adopt adver-
sarial training using a discriminator as well as a generator. In the
first stage for an initial generator, 𝐺 (1𝑠𝑡 ) , we use a vanilla GAN [4]
following ACME [25] and R2GAN [30]. In the second stage, we fo-
cus on training a generator with the networks of embedding parts
frozen. We use LSGAN [16] because we experimentally found that
it generated higher-quality images than SNGAN [19] and WGAN-
GP [5]. To improve the quality of image generation, we applied the
discriminator to the images generated from textual embeddings, 𝑇 ,
(txt2img), as well as images generated from visual embeddings, 𝑉 ,
(img2img). The loss functions of a discriminator, 𝐷 , and a generator,
𝐺 , are as follows:

L𝐷 = L𝐷𝑟𝑒𝑎𝑙
+ L𝐷𝑖𝑚𝑔2𝑖𝑚𝑔

+ L𝐷𝑡𝑥𝑡2𝑖𝑚𝑔
(4)

= Ei∼𝑝 (i) [(𝐷 (i) − 𝑏)2]
+ Ei∼𝑝 (i) [(𝐷 (𝐺 (𝑉 (i), 𝐸𝑆 (i))) − 𝑎)2],
+ Ei∼𝑝 (i),t∼𝑝 (t) [(𝐷 (𝐺 (𝑇 (t), 𝐸𝑆 (i))) − 𝑎)2]

L𝐺 = L𝐺𝑖𝑚𝑔2𝑖𝑚𝑔
+ L𝐺𝑡𝑥𝑡2𝑖𝑚𝑔

(5)

= Ei∼𝑝 (i) [(𝐷 (𝐺 (𝑉 (i), 𝐸𝑆 (i))) − 𝑐)2] (6)

+ Ei∼𝑝 (i),t∼𝑝 (t) [(𝐷 (𝐺 (𝑇 (t), 𝐸𝑆 (i))) − 𝑐)2] (7)
𝑤ℎ𝑒𝑟𝑒 𝑉 (i) = FC(𝐸𝑉 (i)),𝑇 (t) = FC(𝐸𝑇 (t)),

i and t represent an recipe image and the corresponding recipe text
in the training set, respectively, and 𝑎, 𝑏, and 𝑐 , are the constants
in LSGAN [16]. In the experiments, we used (𝑎, 𝑏, 𝑐) = (−1, 1, 0)
following [16].
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3.3.4 Disentanglement Loss. We prepared two losses for feature
disentanglement of recipe image embeddings and dish shape fea-
tures, which are (1) reconstruction loss, and (2) disentanglement
loss. The basic idea is that we encode two images associated with
different recipes, i1 and i2, to visual embedding,𝑉1 and𝑉2, and dish
shape features, 𝐸𝑆 (i1) and 𝐸𝑆 (i2), generate food images by combin-
ing them in several ways, and examine (1) if the same embedding or
the same shape feature can be extracted from the generated image
or (2) if the generated image is classified into the same title category
as the recipe title category of the input image.

With the reconstruction loss, we confirm if the original feature
can be encoded from the generated images. We generate the im-
age, ifake, with 𝑉1 and 𝐸𝑆 (i2), and examine if 𝑉1 and 𝐸𝑆 (i2) can
be reconstructed from ifake. The difference between the original
feature and the re-encoded features is evaluated by the L1 distance.
This idea is imported from the latent reconstruction loss proposed
in MUNIT [12]. The loss function of the reconstruction loss is as
follows:

L𝑅𝑒𝑐𝑜𝑛 = Ei1,i2∼𝑝𝑑𝑎𝑡𝑎 (i) [ |𝑉 (i1) − FC(𝐸𝑉 (𝐺 (𝑉 (i1), 𝐸𝑆 (i2)))) |1 ]
+ Ei1,i2∼𝑝𝑑𝑎𝑡𝑎 (i) [ |𝐸𝑆 (i2) − 𝐸𝑆 (𝐺 (𝑉 (i1), 𝐸𝑆 (i2))) |1 ]

𝑤ℎ𝑒𝑟𝑒 𝑉 (i) = FC(𝐸𝑉 (i)) . (8)

The disentanglement loss is to confirm if a generated image
reflects recipe semantic information correctly. We confirm if the
generated image is always classified into the same title category
and reconstructs the same ingredient list with the fixed visual
embedding even when the shape features are changed. To do that,
we apply the classification loss (Eq.3) to generated images as a
disentanglement loss. The loss function of the disentanglement loss
is as follows:

L𝐷𝑖𝑠𝑒𝑛 = L𝑇𝑖𝑡𝑙𝑒 (𝑉 ′(i1, i1), 𝑙𝑇 ) + L𝑇𝑖𝑡𝑙𝑒 (𝑉 ′(i1, i2), 𝑙𝑇 )
+ L𝐼𝑛𝑔𝑟 (𝑉 ′(i1, i1), 𝑙𝐼 ) + L𝐼𝑛𝑔𝑟 (𝑉 ′(i1, i2), 𝑙𝐼 )

𝑤ℎ𝑒𝑟𝑒 𝑉 ′(i1, i2) = FC(𝐸𝑉 (𝐺 (𝑉 (i1), 𝐸𝑆 (i2)))),
𝑉 (i) = FC(𝐸𝑉 (i)), (9)

and 𝑙𝑇 and 𝑙𝐼 represent a groundtruth food category label and a
groundtruth ingredient vector, respectively.

3.4 Training
By summing all the loss functions explained so far, the total loss
function can be written as follows:

L𝑇𝑜𝑡𝑎𝑙 = 𝜆1L𝐶𝑙𝑎𝑠𝑠 + 𝜆2L𝑀𝐴 + 𝜆3L𝑇𝑟𝑖

+ 𝜆4L𝐺 + 𝜆5L𝐷𝑖𝑠𝑒𝑛 + 𝜆6L𝑅𝑒𝑐𝑜𝑛, (10)

where 𝜆1, ..., 𝜆6 are constants weighting losses.
The total loss function is minimized by adversarial training using

the discriminators, 𝐷𝑀 and 𝐷 . Training is performed in two stages
as explained above. In the first stage, we train all the network
including the recipe image encoder, 𝐸𝑉 , the recipe text encoder, 𝐸𝑇 ,
a temporary dish shape encoder and generator, 𝐸 (1𝑠𝑡 )

𝑆
and𝐺 (1𝑠𝑡 ) ,

while in the second stage we train a final dish shape encoder and
generator, 𝐸𝑆 and𝐺 , with the recipe image encoder and the recipe
text encoder, 𝐸𝑉 and 𝐸𝑇 , fixed. In both the stages, we train the
networks in the end-to-end manner.

4 EXPERIMENTS
We evaluated our proposed model using Recipe1M [17, 22]. Follow-
ing [22], we used 238,999 image-recipe pairs for training, 51,119
pairs for validation, and 51,303 pairs for testing. We used Adam
with initial learning rate at 0.0001 for training. We trained the first-
stage model for the first 50 epochs. After that we changed the stage
and trained the second-stage model for the next 50 epochs.

We empirically decided the value of each of the loss weights.
Basically we adjusted the weighting constants so that each of the
losses affected to the total loss equally. The loss weights for Eq.10
used in the experiments are as follows: 𝜆1 = 0.02, 𝜆2 = 0.01, 𝜆3 = 1.0,
𝜆4 = 0.02, 𝜆5 = 0.005, and 𝜆6 = 0.5.

4.1 Evaluation on Cross-modal Recipe Search
We evaluated cross-modal search performance quantitatively re-
garding both recipe image search from texts (text-to-image search)
and recipe text search from images (image-to-text search). The accu-
racy of the recipe retrieval of the existing methods and the proposed
method were evaluated by the MedR and the recall rate. MedR is an
index representing the median ordered good search ranking of all
data. Recall rate is an index showing that the proportion of correct
data presents within 1, 5, or 10-th ranks in the search of all the data.
1,000 or 10,000 samples were randomly sampled from the test set of
Recipe1M. We have evaluated a search accuracy on the average of
10 experiments. In the experiments, we used JE [22], AdaMine [1],
R2GAN [30], ACME [25], MCEN [3] and Zan et al. [27] as baselines.
The details of them were explained in Section 2.1.

The results are shown in Table 1. For the larger test set, 10k,
on both image-to-text and text-to-image cross-modal search, the
proposed method clearly outperformed all the state-of-the-arts
regarding all of the statistics with large margin, and for the smaller
test set, 1k, it outperformed all the baselines regarding R@1 as well.
On the other hand, for R@5 with 1k, it could not outperform Zan
et al. [27], and for R@10 with 1k it could not outperform Zan et
al. [27] and ACME [25]. For R@5 and R@10 with the smaller test
set, 1k, the performance of the baselines is more than 80%, which
means that the room to be improved are relatively smaller than
10k and R@1 of 1k. In fact, the recipe1M dataset contains some
noisy texts and noisy images such as photos of human faces and
recipe books, since it was created by crawling commercial recipe
sites without detailed screening by human. We expect this is one
of the possible reasons why it was difficult to improve R@5 and
R@10 with 1k, although our method was able to outperform all the
baselines on all the scores in case of 10k with large margin.

From these observations, we conclude that disentanglement of
recipe information and non-recipe information for encoding visual
recipe embeddings helped improve cross-modal search performance
effectively.

4.2 Ablation Study
To examine if feature disentanglement helped performance im-
provement more, we made ablation studies with 10k samples. The
functions related to image generator,𝐺 , in the total loss function
(Eq.10) are an image generator adversarial loss, L𝐺 (Eq.5), and two
disentanglement-related losses, L𝐷𝑖𝑠𝑒𝑛 (Eq.9) and L𝑅𝑒𝑐𝑜𝑛 (Eq.8).
Note that L𝐺 consists of L𝐺𝑡𝑥𝑡2𝑖𝑚𝑔

(Eq.7) and L𝐺𝑖𝑚𝑔2𝑖𝑚𝑔
(Eq.6),
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Table 1: Comparison of the retrieval performance to the baselines.

Test set size Image-to-Text retrieval Text-to-Image retrieval
Methods MedR↓ R@1↑ R@5↑ R@10↑ MedR↓ R@1↑ R@5↑ R@10↑

1k

JE [22] 5.2 24.0 51.0 65.0 5.1 25.0 52.0 65.0
AdaMine [1] 1.0 39.8 69.0 77.4 1.0 40.2 68.1 78.7
R2GAN [30] 2.0 39.1 71.0 81.7 2.0 40.6 72.6 83.3
MCEN [3] 2.0 48.2 75.8 83.6 1.9 48.4 76.1 83.7
ACME [25] 1.0 51.8 80.2 87.5 1.0 52.8 80.2 87.6
Zan et al. [27] 1.0 52.7 81.7 88.9 1.0 54.1 81.8 88.9
RDE-GAN (ours) 1.0 59.4 81.0 87.4 1.0 61.2 81.0 87.2

10k

JE [22] 41.9 - - - 39.2 - - -
AdaMine [1] 13.2 14.9 35.3 45.2 12.2 14.8 34.6 46.1
R2GAN [30] 13.9 13.5 33.5 44.9 12.6 14.2 35.0 46.8
MCEN [3] 7.2 20.3 43.3 54.4 6.6 21.4 44.3 55.2
Zan et al. [27] 7.0 22.1 45.9 56.9 7.0 23.4 47.3 57.9
ACME [25] 6.7 22.9 46.8 57.9 6.0 24.4 47.9 59.0
RDE-GAN (ours) 3.5 36.0 56.1 64.4 3.0 38.2 57.7 65.8

and L𝐺𝑡𝑥𝑡2𝑖𝑚𝑔
are already used in ACME. So we remove L𝐺𝑖𝑚𝑔2𝑖𝑚𝑔

,
L𝐷𝑖𝑠𝑒𝑛 and L𝑅𝑒𝑐𝑜𝑛 to examine the effects of two disentanglement-
related losses and one newly-introduced generator adversarial loss.

Table 2 shows the results. In the table, +𝐸𝑆 means our model
without three kinds of the losses which is equivalent to ACME plus
the shape feature encoder, 𝐸𝑆 . Because +𝐸𝑆 achieved the higher ac-
curacy than the ACME which is the state-of-the-art on 10k samples,
adding the shape feature branch can be regarded as being effective
to remove non-recipe information, which might be harmful for
cross-modal search, from visual embeddings. The accuracy was im-
proved more by adding eitherL𝐺𝑖𝑚𝑔2𝑖𝑚𝑔

orL𝐷𝑖𝑠𝑒𝑛 . By using all the
three losses, the accuracy was greatly improved, and the proposed
method outperformed all the current state-of-the-arts greatly. From
these results, all the three losses newly proposed in the paper are
effective for improving the cross-modal search performance.

In addition, we also evaluated the model trained from scratch
in only the second stage by skipping the first stage. The bottom
row of the table shows the results, which means that training of
the model failed and two-stage training is required. This is because
the representation ability of the 8x8x1024 shape map feature is too
strong compared to a 128-d visual recipe embedding, and recipe
information in addition to non-recipe information is expected to
pass through the shape feature branch.

Note that there is no difference regarding retrieval tasks between
the only first stage and the two stages, since the encoder of visual
embedding, 𝐸𝑉 , is frozen at the time of training in the second stage.

4.3 Evaluation on Food Image Synthesis
Since food image synthesis is a by-product of the disentangled
recipe embeddings, we evaluated the quality of the synthesized
images only for examining the effects of introducing feature dis-
entanglement and two stage training with Fréchet Inception Dis-
tance (FID) [9]. In the experiment, we compare FID scores among
no disentanglement, only first stage and two-stage training. As the
results without disentanglement, we used the ones by ACME [25].

Table 2: Ablation studies on retrieval performance (10k).
Image-to-Text Text-to-Image

Methods MedR↓ R@1↑ R@5↑ MedR↓ R@1↑ R@5↑
ACME [25] 6.7 22.9 46.8 6.0 24.4 47.9
+𝐸𝑆 6.4 28.1 47.7 5.9 30.1 49.7
+𝐸𝑆+L𝐺𝑖𝑚𝑔2𝑖𝑚𝑔

5.8 29.5 50.0 5.0 31.2 51.4
+𝐸𝑆+L𝐷𝑖𝑠𝑒𝑛 5.5 29.7 49.8 5.0 32.2 51.8
ALL 3.5 36.0 56.1 3.0 38.2 57.7
only 2nd stage 361.6 2.7 7.9 288.4 3.6 9.9

Table 3: Comparison on image quality by the FID scores.
Methods Image2Image ↓ Text2Image ↓

no disentangle (ACME) 183.8 182.9
only first stage (ours) 162.8 168.2
two stages (ours) 158.9 158.6

Table 3 shows the results, which indicated that introducing fea-
ture disentanglement improved the quality of the generated im-
ages regarding both image generation from visual embeddings
(Image2Image) and image generation from textual embeddings
(Text2Image). In addition, the results by two stages were better
than the ones by only the first stage, which proved the effectiveness
of the proposed two-stage training procedure.

Figure 4 shows some examples of synthesized images byACME [25],
and our two methods. The reconstructed images of the proposed
method are closer to the input images than the reconstructed image
of ACME. Especially, since the representation ability of the shape
map features is strong, almost the identical images are generated.

4.4 Gradual Change of Synthesized Images
In our method, the generated image can be changed by keeping
a recipe embedding and changing only a shape vector, and vice
versa. To confirm this, we performed morphing on either recipe or
shape. No other methods on recipe image generation have had this
characteristic so far.

Figure 5 shows the results by gradually changing either a recipe
embedding or a shape feature. In case of (a) changing only recipe,
while the shape of the images remains unchanged, the features
related to the ingredients of the foods, such as color and texture,
are changed. In the top row, during the change from salad to plum
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Figure 4: Comparison of the synthesized images with no dis-
entanglement (ACME), (a) only first stage (ours), and (b) two
stages (ours).

tart, the tart-like color emerged with the shape unchanged. In the
second row from salad to chili soup, the green leaves changed to red
chili. In the third row from soup to noodles, the texture of noodles
were gradually added to the soup.

In case of (b) changing only shapes, the background and non-
recipe information which are unrelated to ingredients and cooking
procedure, such as plates and serving styles, are changed. In the
top row from salad to tart, it still looks like a salad, although the
shape of the salad became close to the shape of the plum tart. In
the second row from salad to tomato soup, the color of the leaves,
which looks like a salad, is kept, while the appearance of a salad
is gradually changed from a close-up shot to the overhead shot in
which a salad is served in the plate. In the third row from soup to
noodles, the shape of the soup bowl is changed from a circle to a
square. More results are shown in the supplementary material.

Since RDE-GAN can generate images not only from visual em-
beddings but also from textual embeddings, we also performed
morphing between two textual embeddings to examine the conti-
nuity of the textual recipe embedding space. Figure 6 shows the
results by changing the textual embedding between the left recipe
and the right recipe gradually in each row. In the experiment, we
used the recipe texts corresponding to the recipe images shown
in Figure 5(a) and the same dish shape features as well. As results,
we can see almost the same results in Figure 6 as the results in
Figure 5(a), since the visual embedding and the textual embedding
within the same recipe are expected to be very close to each other.
In the top row the color of salad was changed to tart-like color, in
the second row the color was changed to be like chill soup, and in
the bottom row the fine-grained noodle textures emerged. In all
the cases, the shape remained unchanged. These results indicate
that visual and textual embeddings in our embedding space can be
exchanged to each other for recipe image synthesis, which means
that food image translation by changing recipe texts is possible
with our model.

5 CONCLUSIONS
In this paper, we proposed Recipe Embedding and Disentangling
GAN (RDE-GAN) which disentangled recipe information from non-
recipe information for encoding recipe images. By introducing
feature disentangling, we successfully obtained cross-modal recipe
embeddings which reflected only the recipe content information by
excluding non-recipe information such as dish shape and serving
style, and outperformed the state-of-the-art results of the existing

Figure 5: (a) Synthesized dish images by changing the visual
recipe embeddings extracted from two recipe images grad-
ually. (b) Images generated by changing the dish shape vec-
tors. More results are shown at the supplementarymaterial.

Figure 6: Synthesized dish images by changing the textual
recipe embedding between two recipe texts gradually. The
recipe images corresponding to each of the recipe texts are
shown in the leftmost and rightmost columns in Table 5.

baselines on both image-to-recipe and recipe-to-image retrieval
with 10k samples. In addition, we synthesized food images from
either textual embeddings or visual embeddings by integrating them
with dish shape vectors, and showed that we could controlled dish
image synthesis in various ways by combining recipe embeddings
and dish shape features. Since we can integrate a textual embedding
with a dish shape feature, we can change the food category and
the ingredients of a given dish image with a recipe text. This is one
of the advantages brought only by the integration of cross-modal
recipe embedding and disentangled image synthesis.

For future work, we plan to improve both the quality and the
size of synthesized food images keeping the performance on cross-
modal recipe search.We also plan to apply cross-modal disentangled
embeddings into other domains than food recipes.
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