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Introduction

® Deep learning models typically use a large amount of data for training.
® However, the construction of large datasets requires a lot of effort.

® For learning with small datasets, the transfer of prior knowledge using
pretrained models is effective.

® For deep generative models, a method of transferring prior knowledge to
another dataset has also been proposed.

® Noguchi and Harada [12] proposed a new method to generate images from a
small data set by transferring a pre-trained generative model.



Objective

Objective

Transfer pre-trained generative models
to achieve image generation from small datasets.
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Related Work — Few-shot GAN—

® In general, GANs require a large number of training samples to produce high-
quality images.

® Few-shot GANs require a large image dataset such as ImageNet for pre-training
but use a smaller dataset for fine-tuning.



Related Work — Few-shot GAN—

® Noguchi and Harada
[12] Noguchi, A., Harada, T.: Image generation from small datasets via batch statistics adaptation. ICCV. 2019
— It is a method for adapting a pre-trained generative model to datasets from
different domains.

— To effectively use the pre-learned knowledge, the weights of the
convolutional layers of the generator are all fixed during fine-tuning.

— Adapt only the scale and shift parameters of the batch normalization (BN)
layer to a small dataset.
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Method — Adaptive Point-wise Grouped Convolution —

® Extending the work of Noguchi and Harada (a), we introduce an Adaptive point-
wise grouping convolution for more flexible domain adaptation.
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(a) Channel-wise modulation < 9
(Noguchi and Harada[10])



Method — Adaptive Point-wise Grouped Convolution —

® The 1x1 convolutional layer, called point-wise convolution (c), constructs new
features by computing linear combinations of input channels.

® However, point-wise convolution has the problem of too many parameters.
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Method — Adaptive Point-wise Grouped Convolution —

® The idea of grouping convolution is also applied to Adaptive point-wise
convolution (b) as a way to reduce the number of parameters.

® In grouped convolution, the input feature maps are grouped in the channel
direction, and convolution operations are applied between each group.

— The number of parameters can be reduced.
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Method — Training and Inference —

® The generator is first pre-trained on a large dataset such as ImageNet.

® Then, an Adaptive Point-wise Grouped Convolutional layer with corresponding
FC layers is inserted immediately after all the batch normalization layers and

fine-tuned on a small dataset.

® During inference, a randomly sampled vector z based on the standard normal
distribution is fed into the generator to generate a random image.
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Experiments — Experiment setup—

® Model
— BigGAN-128

® Dataset
— Human face ( FFHQ Dataset )
— Passion flower ( Oxford 102 flower Dataset )
— African firefinch ( 260 Bird Species Dataset )
— BMW ( Cars Dataset )

® Evaluation metric
— KMMD

Evaluation metric when the
number of test images is small




Experimentl — Comparison with the baseline —

® We compared the quality of the generated images when the number of
groupings was changed based on Noguchi and Harada.

® The quality of the proposed method improved as the number of parameters
increased.

—Adaptive point-wise convolution increased the variation of feature channels.
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Experiment2 — Experiments with additional datasets —

® We used 25, 50, and 100 images sampled from each of the four datasets and
compared the proposed method with the baseline.

® The proposed method can produce more detailed and higher-quality images
than the baseline.

Dataset ‘ Model ‘ Nu?:tear of ‘ KMMD( ) . Hum:(r; face - 25Afr|car;2ref|nc;\00
. 25 2.976
Noguehiand | 5
Passion 100 2.965
flower 25 2.955
Ours 50 2.960
100 2.954
. 25 2.965
Noguehiand | 5
African 100 2.532
firefinch 25 2.937
Ours 50 2.493
100 2.506




Experiment2 — Experiments with additional datasets —

Human face

® The results of interpolation between two
randomly generated latent vectors are
shown.
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Conclusion

® In this work, we proposed a simple and effective method for generating images
from small datasets.

® By updating only the parameters of Adaptive Point-wise Grouped Conv, a new
Image can be generated from a small number of images.

® In the future, the method may be used to generate higher-quality images from
smaller datasets.
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