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1. INTRODUCTON

® Deep learning models forget previously learned tasks when given a new task
(catastrophic forgetting)

® Continual Learning addresses this problem by allowing users to continuously
learn new tasks while retaining knowledge of previously learned tasks
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1. INTRODUCTON

® Recently, the Vision Transformer, which utilizes the Transformer architecture
used in natural language processing for computer vision, has shown accuracy
that exceeds that of CNN

® Conventional Continual Leaning methods are generally designed to be applied to
CNNs, so methods that can be applied to Vision Transformer are limited

® Vision Transformer, which has a larger model size than CNN, requires a larger
additional model size when applying Continual Learning methods

— Need to suppress catastrophic forgetting with fewer parameters than
conventional methods for application to CNN
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2. OBJECTIVE

Objective

Method to suppress catastrophic forgetting
with few parameters applicable
to Vision Transformer



3. RELATED WORK - Continual Learning -

® Continual Learning is a method of continuously learning new tasks while
retaining knowledge of tasks learned in the past

— Class incremental: a new class is added
— Task incremental: a new task is added
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3. RELATED WORK - Continual Learning -

® Rectification-based Knowledge Retention (RKR)
[1] Singh et al. Rectification-based Knowledge Retention for Continual Learning. CVPR 2021

— Apply task-specific modification parameters to the base parameters
« Rectification Generator (RG) : Parameters to modify weights
« Scaling Factor Generator (SFG) : Parameters to modify intermediate outputs
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3. RELATED WORK - Continual Learning -

® Piggyback

[3] Arun et al. Piggyback: Adding multiple tasks to a single, fixed network by learning to mask. ECCV 2018
— Apply the learned weight masks to the weights of the base model to transform the
output

— The weight mask is represented by a binary mask, so the number of additional
parameters is small
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3. RELATED WORK - Vision Transformer -

® VIT
[2] Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2021.
— Method directly applying the standard Transformer to a sequence of image patches

® Swin Transformer
[3] Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. CVPR 2021.

— A method that solves the problems of ViT, such as limited resolution of object
detection and a large number of input patches

segmentation
P cla531ﬁcat10n detectxon classification
Head /T/ /
i ///// //////7/16><
Transformer Encoder ] £

/7;/ 77 /7 8)( %

[c lixrrallzzﬁl%atgg ng Llnear Projection of Flattened Patches :1 Z ﬁ//{i ,/,/7:;% / 1 6><
SHE | =L .| I | @Wgé,@m ce—_ e d PEERN
o e ) T (a) Swin Transformer (ours) (b) ViT L 19))
Lo N/

A VT A Swin Transformer



3. RELATED WORK - Continual Learning in Vision Transformer -

® DyTox

[19] Arthur et al. Dytox: Transformers for continual learning with dynamic token expansion. CVPR 2022.
— Use task-specific tokens to generate task-specific embedding

® Learning to Prompt for Continual Learning (L2P)
[20] Zifeng et al. Learning to prompt for continual learning. arXiv:2112.08654, 2021.

— Methods for applying prompt learning in the field of natural language processing

® These methods are not comparable because they are class incremental
methods
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4. METHOD - Method Overview -

® In this work, we propose Mask-RKR as a method to perform task incremental
Continual Learning

® Mask-RKR is a method that applies Piggyback to the base RKR

® Main features of Mask-RKR
— Adaptation to task by RKR
— Parameter reduction by Piggyback



4. METHOD - Adaptation to task by RKR -

® Mask-RKR adapts the network to each task by using RKR as the base.

® RKR uses two generators, the Rectification Generator (RG) and the Scaling
Factor Generator (SFG), to modify the weights and intermediate outputs of the
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4. METHOD - Adaptation to task by RKR -

RG Overview(1/2)

® In RG, task- and layer-specific weight modification parameters are added to the
weights of each task and layer that have already been pre-trained on the large

data set
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4. METHOD - Adaptation to task by RKR -

RG Overview(2/2)
® Parameter reduction with low-rank approximation

® |earn two matrices LM and RM of small size and use their product to generate
parameters for weight modification
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4. METHOD - Adaptation to task by RKR -

SFG Overview

® In SFG, the intermediate output of each task and layer is multiplied by the
iIntermediate output modification parameters specific to each task and layer

: Feature Map

: Task Sharing Parameters

: Task Specific parameter
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4, METHOD - Parameter reduction by Piggyback -

® Piggyback transforms the output by applying a learned weight mask to the base
weights

® Mask-RKR further reduces the number of parameters by applying Piggyback to
the RKR parameters
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4, METHOD - Parameter reduction by Piggyback -

Parameter reduction in RG
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4, METHOD - Parameter reduction by Piggyback -

Parameter reduction in SFG
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5. COMPARISON WITH BASELINE - Experimental Overview -

® Experiments were conducted in three Continual Learning settings to verify the
performance of Mask-RKR

® Model

ResNet-18, VIiT, Swin Transformer

® Baseline

Single : Learning each task with a unique model
Multi Head : Only the final output layer is replaced for each task

RKR(K=2) : A method to modify network weights and intermediate outputs for
each task

Piggyback : A method of transforming output by applying learned weight masks
Ours
« Ours(K=2) : Mask-RKR of the proposed method

« Ours K+ : Mask-RKR with the same number of parameters as "RKR" by
adjusting the value of K 1))
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5. COMPARISON WITH BASELINE - EX1 : Experiment using CIFAR-100 -

® Using CIFAR-100, which contains 100 classes of plants, animals, equipment, etc.
— Divided into 10 tasks with 10 classes and studied in sequence

(Task 1 — Task 2 — ... = Task 10)
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Multi Head 0.727 0.791 0.768 (+g_}1-1§/£ <+§.géz/o3> . 1152/2)
RKR(K=2) 0.794 0.843 0.858 (+51.ééz/3 (+§2£§ (+19.%££
Piggyback 0804 0838 0875 LN SIS Lo
Ours(K=2) 0.781 0.840 0.841 <+1.%'13/f§ <+§.(756§/S (+3.§é§/3
Ours K+ o796 osas  osss 178 88T L4

Q
NN
J

18
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5. COMPARISON WITH BASELINE - EX1 : Experiment using CIFAR-100 -

® Using CIFAR-100, which contains 100 classes of plants, animals, equipment, etc.
— Divided into 10 tasks with 10 classes and studied in sequence

Ours K+

(Task 1 —» Task 2 — ... = Task 10)
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5. COMPARISON WITH BASELINE - EX2 : Experiment using ImageNet-1k -

® Using ImageNet-1k, a large dataset with 1000 classes
— Split into 10 tasks with 100 classes and train them in sequence

(Task 1 —» Task 2 — ... = Task 10)
Ave. Acc Params.[M]
Method \ Model - - - -
ResNet-18 VIT Swin ResNet-18 VIT Swin
: 112.18 858.76 868.46
Single 0.678 0.888 0.902 (+900.00%) |  (+900.00%) |  (+900.00%)
11.68 86.57 87.77
Achieves high accuracy while (+a.12%)  (+0.81%)]  (+1.06%)
o _ 12.20 90.71 92.34
Mminimizing parameter increases (+8.73%) (+5.64%) (+6.33%)
. 15.17 113.11 113.94
Piggyb 0.805  ,3520%)|  (431.7190)|  (+31.20%)
_ 11.75 87.10 88.35
Ours(K=2) ‘ — 0.879 0.870 (+4.71%) (+1.42%) (+1.74%)
12.43 90.71 92.3%
oursk+ |® o582 % osss| * osos & 1243 § 2071 § 905
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® Use datasets from different domains

— 5 tasks trained in sequence
(D. Textures > GTSRB — SVHN — UCF101 — VGG-Flower)

5. COMPARISON WITH BASELINE - EX3 : Experiments with different domain datasets -

Ave. Acc Params.[M]
Method\Model - - - -
ResNet-18 VIT Swin ResNet-18 VIT Swin
: 111.91 857.39 594.62
Single 0.776 0.816 0.842 (+900.00%) | (+900.00%) (+900.00%)
Reduces parameter increase (+1.17%)  (+0.18%)  (+0.22%)
840 11.58 87.97 61.49
but decreases accuracy ' (+3.49%) (+2.60%) (+3.41%)
13.07 99.16 68.75
it (+16.76%) (+15.66%) (+15.62%)
_ 11.38 86.36 60.02
Ours(K=2) ‘ 0.635 0.775 0.824 (+1.71%) (+0.72%) (+0.94%)

Ours(K+)
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6. ABLATION EXPERIMENT - Verification of the usefulness of the mask -

® The usefulness was verified by comparing RG and SFG w/ and w/o applying
masks to each.
— "RG w/ Mask": Apply mask to RG
— "SFG w/ Mask": Apply mask to SFG

® In this experiment, the model with Piggyback applied to RG and SFG with the
lowest number of parameters is used

Ave. Acc Params.[M]
{€ SFG ResNet ResNet
w/ Mask w/ Mask [aagassll IRV} Swin “le | VT Swin

11.74 89.88 1.43
0.794 0.843 0.858 (+5.05%) | (+4.92%) | (+19.72%)
11.33 87.07 1.28
0780 0844 m (+1.38%) (+1.64%) (+6.59%)
11.69 89.15 1.40
0.794 0-845 0-858 (+4.68%) (+4.08%) (+17.20%)

11.28 86.26

(+1.01%) (+0.70%)




® Verified where masks are applied in RG
(1) Not applied
(2) Applied to weight modified parameters

(3) Applied to low-rank approximated parameters (Mask-RKR)

Apply mask
(3)
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6. ABLATION EXPERIMENT - Verification of Piggyback application locations -
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® To reduce the number of parameters, it is more effective to apply Piggyback

to each of LM and RM
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6. ABLATION EXPERIMENT - Verification of Piggyback application locations -

® Verified where masks are applied in RG Applzl |)11ask Applz/ |)11ask
3 2

(1) Not applied
(2) Applied to weight modified parameters ] _Wl e|ighlt |

(3) Applied to low-rank approximated parameters (Mask-RKR) X modification

Lparameter

I .

® To reduce the number of parameters, it is more effective to apply Piggyback
to each of LM and RM

Ave. Acc Params.[M]
Method - -
Rei'get ViT Swin Rei';et ViT Swin
11.69 89.15 1.40
(1) 0.794 0.845 0.858 (+4.68%) (+4.08%) (+17.20%)
41441 4110.05| ® 1.55
(2) ® 0.805 W 0.845 ™ 0.847 (+29.00%)|  (+28.48%)| (+29.32%)
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/. CONCLUSION

® We proposed Mask-RKR, a continual learning method that can be applied to
both CNN and Vision Transformer

® Experimental results show that Mask-RKR can achieve higher accuracy than
conventional methods while minimizing the increase in the number of
parameters

® In the future, we would like to improve Mask-RKR to make it flexible enough to
handle continuous learning using datasets from different domains






