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1. INTRODUCTON

1

⚫ Deep learning models forget previously learned tasks when given a new task 
(catastrophic forgetting)

⚫ Continual Learning addresses this problem by allowing users to continuously 
learn new tasks while retaining knowledge of previously learned tasks
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1. INTRODUCTON

2

⚫ Recently, the Vision Transformer, which utilizes the Transformer architecture 
used in natural language processing for computer vision, has shown accuracy 
that exceeds that of CNN

⚫ Conventional Continual Leaning methods are generally designed to be applied to 
CNNs, so methods that can be applied to Vision Transformer are limited

⚫ Vision Transformer, which has a larger model size than CNN, requires a larger 
additional model size when applying Continual Learning methods

→ Need to suppress catastrophic forgetting with fewer parameters than 
conventional methods for application to CNN
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2. OBJECTIVE
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Objective

Method to suppress catastrophic forgetting 
with few parameters applicable

to Vision Transformer
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⚫ Continual Learning is a method of continuously learning new tasks while 
retaining knowledge of tasks learned in the past

– Class incremental: a new class is added

– Task incremental: a new task is added

▲ Class incremental ▲ Task incremental
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3. RELATED WORK - Continual Learning -
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⚫ Rectification-based Knowledge Retention (RKR)
[1] Singh et al. Rectification-based Knowledge Retention for Continual Learning. CVPR 2021

– Apply task-specific modification parameters to the base parameters

• Rectification Generator (RG)： Parameters to modify weights

• Scaling Factor Generator (SFG) ： Parameters to modify intermediate outputs
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⚫ Piggyback
[3] Arun et al. Piggyback: Adding multiple tasks to a single, fixed network by learning to mask. ECCV 2018

– Apply the learned weight masks to the weights of the base model to transform the 
output

– The weight mask is represented by a binary mask, so the number of additional 
parameters is small



⚫ ViT
[2] Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2021.

– Method directly applying the standard Transformer to a sequence of image patches

⚫ Swin Transformer
[3] Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. CVPR 2021. 

– A method that solves the problems of ViT, such as limited resolution of object 
detection and a large number of input patches

7
▲ ViT ▲ Swin Transformer

3. RELATED WORK - Vision Transformer -



⚫ DyTox
[19] Arthur et al. Dytox: Transformers for continual learning with dynamic token expansion. CVPR 2022.

– Use task-specific tokens to generate task-specific embedding

⚫ Learning to Prompt for Continual Learning (L2P)
[20] Zifeng et al. Learning to prompt for continual learning. arXiv:2112.08654, 2021.

– Methods for applying prompt learning in the field of natural language processing

⚫ These methods are not comparable because they are class incremental 
methods
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▲ DyTox ▲ L2P

3. RELATED WORK - Continual Learning in Vision Transformer -



4. METHOD - Method Overview -
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⚫ In this work, we propose Mask-RKR as a method to perform task incremental 
Continual Learning

⚫ Mask-RKR is a method that applies Piggyback to the base RKR

⚫ Main features of Mask-RKR

– Adaptation to task by RKR

– Parameter reduction by Piggyback



4. METHOD - Adaptation to task by RKR -
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⚫ Mask-RKR adapts the network to each task by using RKR as the base.

⚫ RKR uses two generators, the Rectification Generator (RG) and the Scaling 
Factor Generator (SFG), to modify the weights and intermediate outputs of the 
network



4. METHOD - Adaptation to task by RKR -
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RG Overview(1/2)

⚫ In RG, task- and layer-specific weight modification parameters are added to the 
weights of each task and layer that have already been pre-trained on the large 
data set



4. METHOD - Adaptation to task by RKR -
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RG Overview(2/2)

⚫ Parameter reduction with low-rank approximation

⚫ Learn two matrices 𝐿𝑀 and 𝑅𝑀 of small size and use their product to generate 
parameters for weight modification
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4. METHOD - Adaptation to task by RKR -
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SFG Overview

⚫ In SFG, the intermediate output of each task and layer is multiplied by the 
intermediate output modification parameters specific to each task and layer



4. METHOD - Parameter reduction by Piggyback -
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⚫ Piggyback transforms the output by applying a learned weight mask to the base 
weights

⚫ Mask-RKR further reduces the number of parameters by applying Piggyback to 
the RKR parameters



4. METHOD - Parameter reduction by Piggyback -
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Parameter reduction in RG



4. METHOD - Parameter reduction by Piggyback -
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Parameter reduction in SFG



5. COMPARISON WITH BASELINE - Experimental Overview -
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⚫ Experiments were conducted in three Continual Learning settings to verify the 
performance of Mask-RKR

⚫ Model

– ResNet-18，ViT，Swin Transformer

⚫ Baseline

– Single： Learning each task with a unique model

– Multi Head： Only the final output layer is replaced for each task

– RKR(K=2)： A method to modify network weights and intermediate outputs for 
each task

– Piggyback：A method of transforming output by applying learned weight masks

– Ours

• Ours(K=2)： Mask-RKR of the proposed method

• Ours K+： Mask-RKR with the same number of parameters as "RKR" by 
adjusting the value of K
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⚫ Using CIFAR-100, which contains 100 classes of plants, animals, equipment, etc.

– Divided into 10 tasks with 10 classes and studied in sequence

(Task 1 → Task 2 → ... → Task 10)

5. COMPARISON WITH BASELINE – EX1 : Experiment using CIFAR-100 -

18

Method＼Model
Ave. Acc Params.[M]

ResNet-18 ViT Swin ResNet-18 ViT Swin

Single 0.833 0.857 0.876 111.72
(+900.00%)

856.59
(+900.00%)

11.98
(+900.00%)

Multi Head 0.727 0.791 0.768 11.22
(+0.41%)

85.73
(+0.08%)

1.22
(+1.45%)

RKR(K=2) 0.794 0.843 0.858 11.74
(+5.05%)

89.88
(+4.92%)

1.43
(+19.72%)

Piggyback 0.804 0.838 0.875 14.71
(+31.65%)

112.27
(+31.07%)

1.56
(+30.29%)

Ours(K=2) 0.781 0.840 0.841 11.28
(+1.01%)

86.26
(+0.70%)

1.24
(+3.79%)

Ours K+ 0.796 0.845 0.858 11.74
(+5.05%)

89.87
(+4.92%)

1.43
(+19.56%)



⚫ Using CIFAR-100, which contains 100 classes of plants, animals, equipment, etc.

– Divided into 10 tasks with 10 classes and studied in sequence

(Task 1 → Task 2 → ... → Task 10)

5. COMPARISON WITH BASELINE – EX1 : Experiment using CIFAR-100 -

18

Method＼Model
Ave. Acc Params.[M]

ResNet-18 ViT Swin ResNet-18 ViT Swin

Single 0.833 0.857 0.876 111.72
(+900.00%)

856.59
(+900.00%)

11.98
(+900.00%)

Multi Head 0.727 0.791 0.768 11.22
(+0.41%)

85.73
(+0.08%)

1.22
(+1.45%)

RKR(K=2) 0.794 0.843 0.858 11.74
(+5.05%)

89.88
(+4.92%)

1.43
(+19.72%)

Piggyback 0.804 0.838 0.875 14.71
(+31.65%)

112.27
(+31.07%)

1.56
(+30.29%)

Ours(K=2) 0.781 0.840 0.841 11.28
(+1.01%)

86.26
(+0.70%)

1.24
(+3.79%)

Ours K+ 0.796 0.845 0.858 11.74
(+5.05%)

89.87
(+4.92%)

1.43
(+19.56%)

Reduces parameter increase 

but decreases accuracy



⚫ Using CIFAR-100, which contains 100 classes of plants, animals, equipment, etc.

– Divided into 10 tasks with 10 classes and studied in sequence

(Task 1 → Task 2 → ... → Task 10)

5. COMPARISON WITH BASELINE – EX1 : Experiment using CIFAR-100 -

18

Method＼Model
Ave. Acc Params.[M]

ResNet-18 ViT Swin ResNet-18 ViT Swin

Single 0.833 0.857 0.876 111.72
(+900.00%)

856.59
(+900.00%)

11.98
(+900.00%)

Multi Head 0.727 0.791 0.768 11.22
(+0.41%)

85.73
(+0.08%)

1.22
(+1.45%)

RKR(K=2) 0.794 0.843 0.858 11.74
(+5.05%)

89.88
(+4.92%)

1.43
(+19.72%)

Piggyback 0.804 0.838 0.875 14.71
(+31.65%)

112.27
(+31.07%)

1.56
(+30.29%)

Ours(K=2) 0.781 0.840 0.841 11.28
(+1.01%)

86.26
(+0.70%)

1.24
(+3.79%)

Ours K+ 0.796 0.845 0.858 11.74
(+5.05%)

89.87
(+4.92%)

1.43
(+19.56%)

Achieves high accuracy while 

minimizing parameter increases



⚫ Using ImageNet-1k, a large dataset with 1000 classes

– Split into 10 tasks with 100 classes and train them in sequence

(Task 1 → Task 2 → ... → Task 10)

5. COMPARISON WITH BASELINE – EX2 : Experiment using ImageNet-1k -

19

Method＼Model
Ave. Acc Params.[M]

ResNet-18 ViT Swin ResNet-18 ViT Swin

Single 0.678 0.888 0.902 112.18
(+900.00%)

858.76
(+900.00%)

868.46
(+900.00%)

Multi Head 0.523 0.871 0.887 11.68
(+4.12%)

86.57
(+0.81%)

87.77
(+1.06%)

RKR(K=2) 0.545 0.885 0.892 12.20
(+8.73%)

90.71
(+5.64%)

92.34
(+6.33%)

Piggyback 0.440 0.881 0.805 15.17
(+35.22%)

113.11
(+31.71%)

113.94
(+31.20%)

Ours(K=2) 0.557 0.879 0.870 11.75
(+4.71%)

87.10
(+1.42%)

88.35
(+1.74%)

Ours K+ 0.582 0.885 0.894 12.43
(+10.83%)

90.71
(+5.63%)

92.30
(+6.28%)

Achieves high accuracy while 

minimizing parameter increases



⚫ Use datasets from different domains

– 5 tasks trained in sequence

（D. Textures → GTSRB → SVHN → UCF101 → VGG-Flower）

5. COMPARISON WITH BASELINE – EX3 : Experiments with different domain datasets -

20

Method＼Model
Ave. Acc Params.[M]

ResNet-18 ViT Swin ResNet-18 ViT Swin

Single 0.776 0.816 0.842 111.91
(+900.00%)

857.39
(+900.00%)

594.62
(+900.00%)

Multi Head 0.567 0.625 0.682 11.32
(+1.17%)

85.89
(+0.18%)

59.59
(+0.22%)

RKR(K=2) 0.714 0.791 0.840 11.58
(+3.49%)

87.97
(+2.60%)

61.49
(+3.41%)

Piggyback 0.723 0.809 0.839 13.07
(+16.76%)

99.16
(+15.66%)

68.75
(+15.62%)

Ours(K=2) 0.695 0.775 0.824 11.38
(+1.71%)

86.36
(+0.72%)

60.02
(+0.94%)

Ours(K+) 0.720 0.778 0.831 11.52
(+2.95%)

87.67
(+2.25%)

61.39
(+3.24%)

Reduces parameter increase 

but decreases accuracy



6. ABLATION EXPERIMENT - Verification of the usefulness of the mask -
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⚫ The usefulness was verified by comparing RG and SFG w/ and w/o applying 
masks to each.

– "RG w/ Mask": Apply mask to RG

– "SFG w/ Mask": Apply mask to SFG

⚫ In this experiment, the model with Piggyback applied to RG and SFG with the 
lowest number of parameters is used

RG
w/ Mask

SFG
w/ Mask

Ave. Acc Params.[M]

ResNet-
18

ViT Swin
ResNet-

18
ViT Swin

x x 0.794 0.843 0.858 11.74
(+5.05%)

89.88
(+4.92%)

1.43
(+19.72%)

✔️ x 0.780 0.844 0.846 11.33
(+1.38%)

87.07
(+1.64%)

1.28
(+6.59%)

x ✔️ 0.794 0.845 0.858 11.69
(+4.68%)

89.15
(+4.08%)

1.40
(+17.20%)

✔️ ✔️ 0.781 0.840 0.841 11.28
(+1.01%)

86.26
(+0.70%)

1.24
(+3.79%)



6. ABLATION EXPERIMENT - Verification of Piggyback application locations -

22

⚫ Verified where masks are applied in RG

(1) Not applied

(2) Applied to weight modified parameters

(3) Applied to low-rank approximated parameters (Mask-RKR)

⚫ To reduce the number of parameters, it is more effective to apply Piggyback 
to each of LM and RM

Method

Ave. Acc Params.[M]

ResNet-
18

ViT Swin
ResNet-

18
ViT Swin

(1) 0.794 0.845 0.858 11.69
(+4.68%)

89.15
(+4.08%)

1.40
(+17.20%)

(2) 0.805 0.845 0.847 14.41
(+29.00%)

110.05
(+28.48%)

1.55
(+29.32%)

(3) 0.781 0.840 0.841 11.28
(+1.01%)

86.26
(+0.70%)

1.24
(+3.79%)

weight
modification
parameter

Apply mask
（2）

Apply mask
（3）

×
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7. CONCLUSION
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⚫ We proposed Mask-RKR, a continual learning method that can be applied to 
both CNN and Vision Transformer

⚫ Experimental results show that Mask-RKR can achieve higher accuracy than 
conventional methods while minimizing the increase in the number of 
parameters

⚫ In the future, we would like to improve Mask-RKR to make it flexible enough to 
handle continuous learning using datasets from different domains




