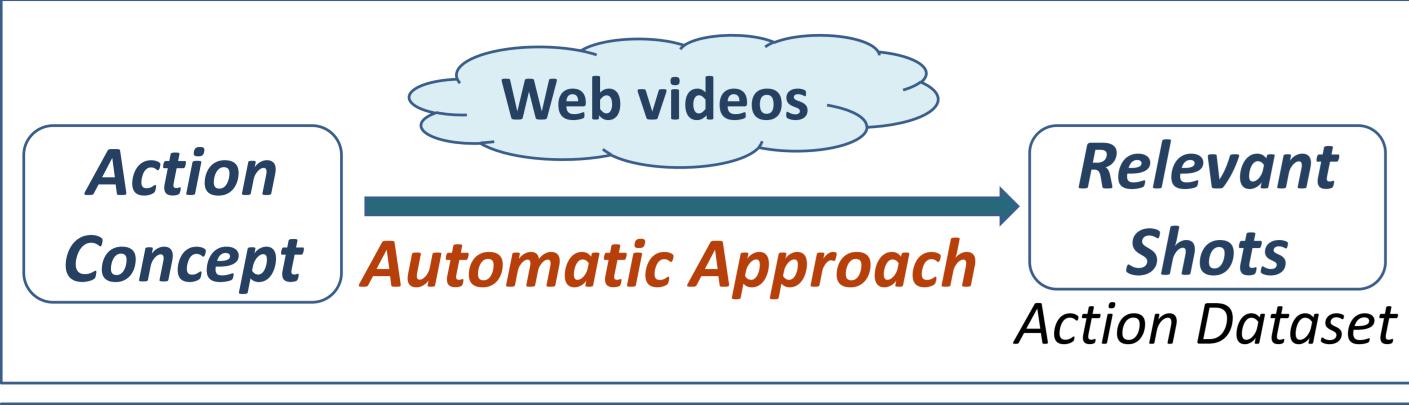
SS5-31: Automatic Action Video Dataset Construction from Web using Density-based Cluster Analysis and Outlier Detection

Do Hang Nga and Yanai Keiji (The University of Electro-Communications, Tokyo)

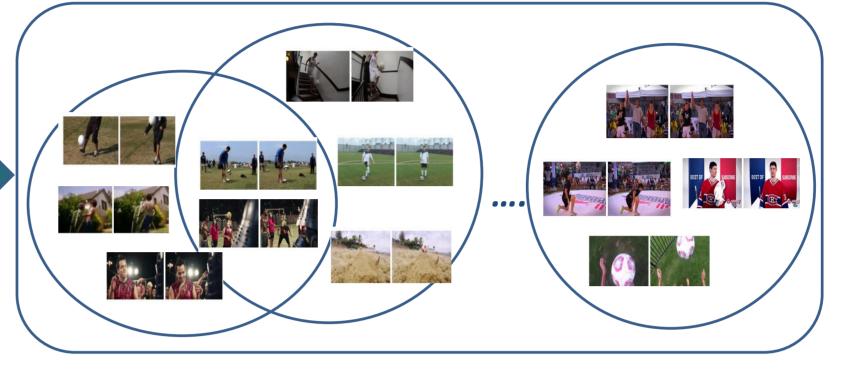
Introduction



- > Previous work: require additional data (e.g.: tags[3]), ignore concept diversity problem
- > This work: exploits only visual features of Web videos, copes with concept diversity

Proposed Approach

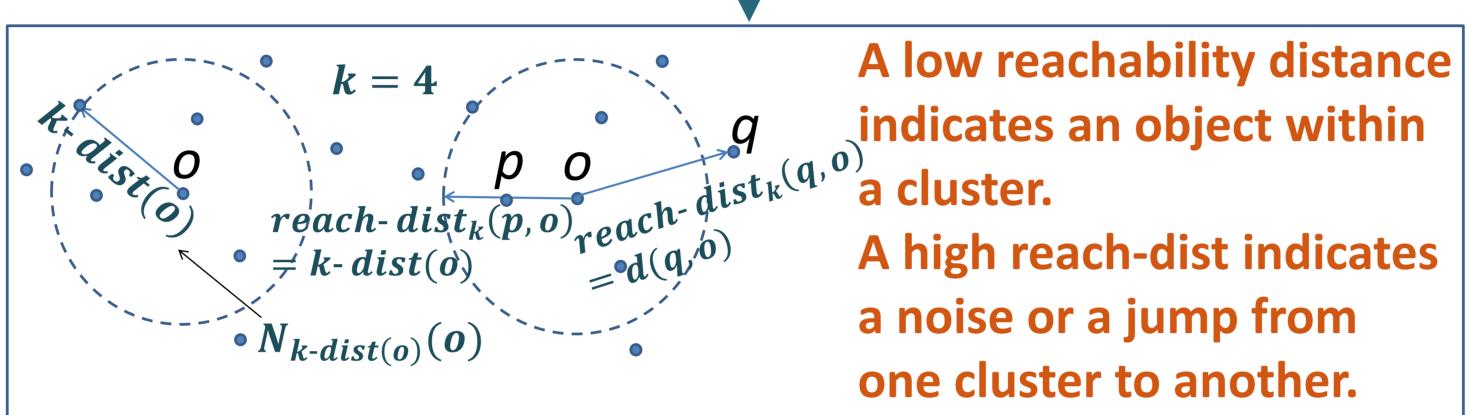
Shot Clustering with OPTICS[1]



Ranking by LOF Shot

Word preparation

- "verb" (dive), "verb+non-verb" (throw hammer), "non-verb" (vault)
- ii. Video search
- "verb" & "verb-ing" (dive & diving)
- iii. Video filtering
- ➤ No videos of "Entertainment"
- iv. Video downloading
- ➤ Web API (e.g. Youtube API)
- v. Shot segmentation
- > Color histogram



A low reachability distance

a noise or a jump from one cluster to another.

$$k\text{-}dist(o) = d(o,p): \begin{cases} 1. \ at \ least \ k \ objects \ q: \ d(o,q) \leq d(o,p) \\ 2. \ at \ most \ k-1 \ objects \ q: \ d(o,q) < d(o,p) \end{cases}$$

$$reach-dist(p,o)=max\big(k\text{-}dist(o),d(p,o)\big)$$

As visual features, we extract motion features using ConvNet models trained on UCF-101 dataset (split 1) with multi-frame stacking optical flows[4].

LOF (Local Outlier Factor) [5] $LOF_{MinPts}(p)$ MinPts - dist(p) $\sum_{o \in N_{MinPts-dist(p)}(p)} \overline{MinPts-dist(o)}$ $|N_{MinPts-dist(p)}(p)|$

Small MinPts - dist corresponds to a region with high density. Shots with low LOF are considered as relevant shots and ranked to the top.

Shots are selected from all clusters to guarantee diversity of selection results.

Experiments and Results

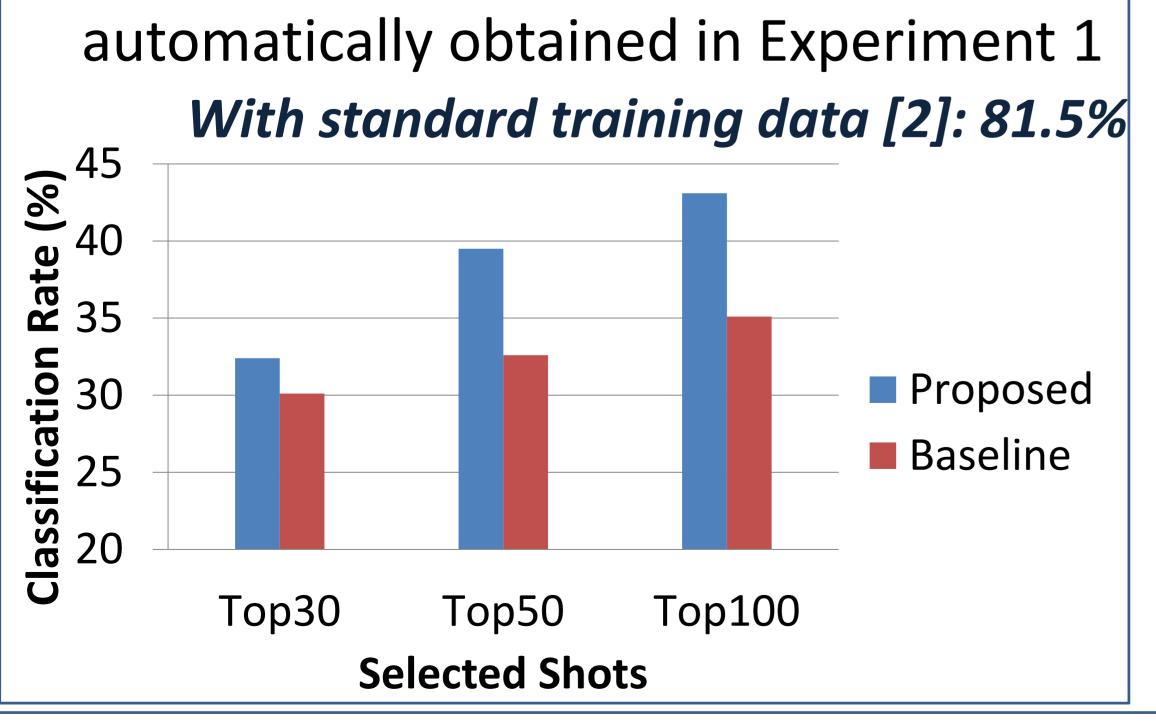
Experiment 1: Dataset Construction

- Data: Web videos (YouTube)
- Actions: 11 actions in UCF11[2]
- Precision rate = percentage of relevant shots among top 100 shots [3]
- Baseline[3]: VisualRank based method

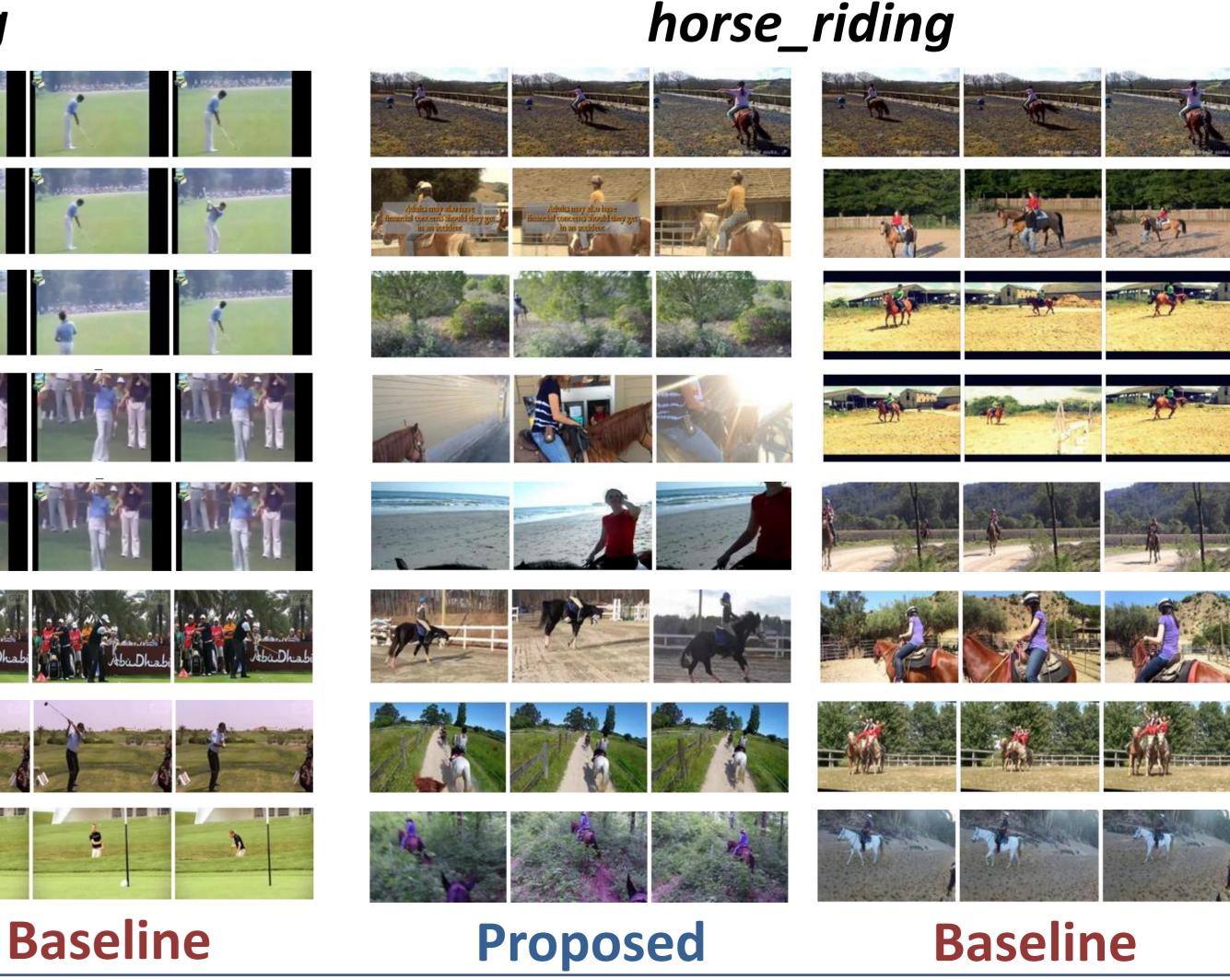
Action	Proposed	Baseline	Action	Proposed	Baseline
basketball	59	67	swing	36	22
biking	30	35	tennis_swing	38	37
diving	25	19	trampoline_jumping	42	44
golf_swing	59	52	volleyball_spiking	36	45
horse_riding	49	48	walking	25	11
soccer_juggling	76	72	Average	43.2	41.1

Experiment 2: Action Classification

- Dataset: UCF11[2]
- Precision = average of 25-fold validation
- Training data: standard data[2] & shots automatically obtained in Experiment 1



golf_swing



- [1] Mihael et al. OPTICS: Ordering Points To Identify the Clustering Structure. ACM SIGMOD International Conference on Management of Data, 1999, pp. 49-60. [2] Jingen et al. Recognizing realistic actions from videos. IEEE Computer Vision and Pattern Recognition, 2009, pp. 1996-2003.
- [3] Nga et al. Automatic Construction of an Action Video Shot Database using Web Videos. IEEE International Conference on Computer Vision, 2011, pp. 527-534. [4] Karen et al. Two-Stream Convolutional Networks for Action Recognition in Videos. Advances in Neural Information Processing Systems 27, 2014, pp. 568-576.
- [5] Chiu et al. Enhancements on local outlier detection. IEEE Database Engineering and Applications Symposium, 2003, pp. 298 307.

Proposed