# Style Image Retrieval Using CNN-based Style Vector

Shin Matsuo, and Keiji Yanai
The University of Electro-Communications, Tokyo
JAPAN

## Background

- Style recognition will help analyzing of images/videos.
- However, style recognition is more difficult than content recognition.
  - Some images have common contents with different styles for misleading elements.



## Objective

Recognition of images with their style, using novel image representation.

- We propose "style vector" based on activation of CNN for this goal.
- Outperform CNN features for style image retrieval.



### Related Work







CNN-based image style transfer [Gatys et al.]



feature map  $F^l$  (= Style matrix)

#### Related Work

Recognizing image style [S. Karayev et al, British Machine Vision Conference 2013]

- Classifying style images using CNN activation features.
- We use same dataset and compare the performance.

Visualizing and Understanding Deep Texture Representations[Tsung-Yu Lin et al, CVPR 2016]

• Texture recognition with Bilinear-CNN feature.

## Style Vector



## Style Vector

Convert  $G^l$  into vector  $V^l$  excluding symmetrical elements.

$$V^l = [G^l_{1,1}, G^l_{2,1}, G^l_{2,2}, \dots, G^l_{N_l,1}, G^l_{N_l,2} , \dots G^l_{N_l,N_l}]$$

$$|V^l| = (hurf\ elements) + (diagnal\ elements) = N_l * (N_l + 1)/2$$



Style vector  $V^l$ 

Ex, at conv5\_1  $N_{conv5_{-1}} = 512$ ,  $|V^{conv5_{-1}}| = 131,328$  PCA (to 4096, 2048, 1024)

## Style Vector

Normalize  $V^l$  with several ways

L2-norm

$$S^{l_{L2}} = \frac{V^l}{\|V^l\|}$$

signed square root + L2-norm.

$$S^{l_{sgnsqrt}} = \frac{sgn(V^l)\sqrt{V^l}}{\|sgn(V^l)\sqrt{V^l}\|}$$

 $\Rightarrow V^l(\text{raw}), S^l_{L2}(\text{L2norm}), S^l_{sgnsqrt}(\text{sgnsqrt})$ 

**Compare three normalizations in experiment** 

## Experiment

1. Style retrieval with direct style vector

2. Style retrieval with PCA

3. Comparison with other work[2]

#### Dataset

|                      | Style/Karayev* Dataset       | Artist Dataset                               |  |  |  |
|----------------------|------------------------------|----------------------------------------------|--|--|--|
| Classes              | Style                        | Artist                                       |  |  |  |
| The number of class  | 25                           | 10                                           |  |  |  |
| The number of Images | 2500 / 82437                 | 1000                                         |  |  |  |
| examples             | Abstract Art Baroque Ukiyo-e | Camille Pissarro Pablo Picasso Salvador Dali |  |  |  |

- The Image Dataset is collected in wikiart.org.
- \* the same dataset as Karayev [2]

## Style retrieval with direct style vector

| data                  | style dataset and artist dataset  |  |
|-----------------------|-----------------------------------|--|
| layer                 | conv1_1,, conv5_1                 |  |
| classification method | k-nearest neighbor                |  |
| normalization         | raw, L2norm and sgnsqrt + L2norm  |  |
| baseline              | CNN features (fc6, fc7 of VGG-16) |  |

## Style retrieval with direct style vector Style dataset Artist dataset



Conv5\_1 layer and sgnsqrt+L2norm normalization was the best.

### Retrieval examples

Success example (style vector worked better)

Common object like humen in many arts, with unique style



#### Retrieval examples

Failure example
(CNN feature worked better)

Whole shapes are more important than style.



## **Style retrieval with PCA**

| data                  | style dataset and artist dataset |  |
|-----------------------|----------------------------------|--|
| layer                 | conv5_1                          |  |
| classification method | k-nearest neighbor               |  |
| normalization         | sgnsqrt + L2norm                 |  |
| dimension             | 4096, 2048, 1024                 |  |
| baseline              | CNN features                     |  |
| Dascille              | (fc6, fc7 of VGG-16)             |  |

## Style retrieval with PCA



The performance was boosted by PCA dimension reduction.

## Comparison with other work

| data                  | Karayev dataset                   |  |  |
|-----------------------|-----------------------------------|--|--|
| layer                 | conv5_1                           |  |  |
| classification method | SVM                               |  |  |
| normalization         | sgnsqrt + L2norm                  |  |  |
| dimension             | 4096, 2048, 1024                  |  |  |
| baseline              | CNN features (fc6, fc7 of VGG-16) |  |  |

## Comparison with other work



|                   | Baselines |           | Ours    |         |         |
|-------------------|-----------|-----------|---------|---------|---------|
| Karayev et al [2] | VGG16_fc6 | VGG16_fc7 | pca1024 | pca2048 | pca4096 |
| 47.30             | 48.11     | 45.35     | 54.94   | 56.26   | 57.00   |

Style vector outperformed the previous work.

#### Conclusions

- Style vector outperformed CNN features in style retrieval of art images.
- The performance was boosted by introducing PCA dimension reduction

Style vector worked well for the images with common objects and unique styles.