

CNNの順・逆伝搬値とCRFを利用 した弱教師領域分割

MIRU 2016 at Hamamatsu, Japan Wataru Shimoda and Keiji Yanai The University of Electro-Communications, Tokyo, Japan

国立大学法人電気通信大学

Introduction

- Pixel-wise annotation is costly
- Our goal is weakly supervised segmentation
 - Train with only image-level-label

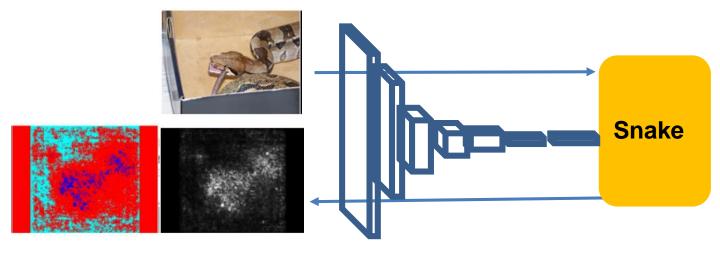
Fully supervised Horse Car Person
Person Back ground

Our contribution

- We improved backpropagation(BP)-based saliency maps
 - By taking in some techniques used in forwardbased semantic segmentation
- We showed BP-based saliency maps can help object localization
 - (1) We verified BP-based saliency maps can enhance forward-based coarse object heat maps
 - (2) We achieved semantic segmentation with only gradient by subtracting each class gradient

BP-based saliency maps

- Propagate class signal through backpropagation
- Visualize image-level-gradient as saliency maps – saliency maps respond to object location

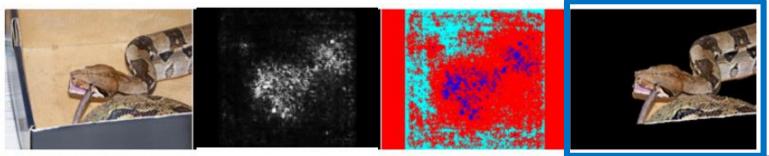


[Simonyan et al. ICLR 2014]

C 2014 UEC Tokyo.

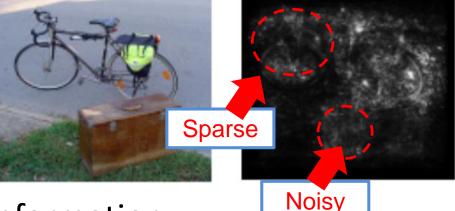
Visualization for Segmentation

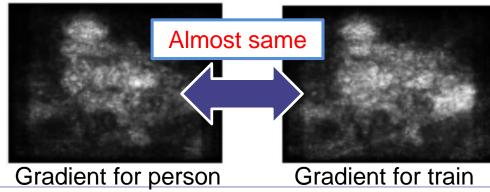
- Visualization mean revealing object location
 - Computed using classification CNN, trained on image labels
 - Weakly supervised methods
- Simonyan et al. tried deal saliency maps as GrabCut seeds and achieved segmentation
 - But they didn't show numerical results



Problems of gradient obtained by backpropagation

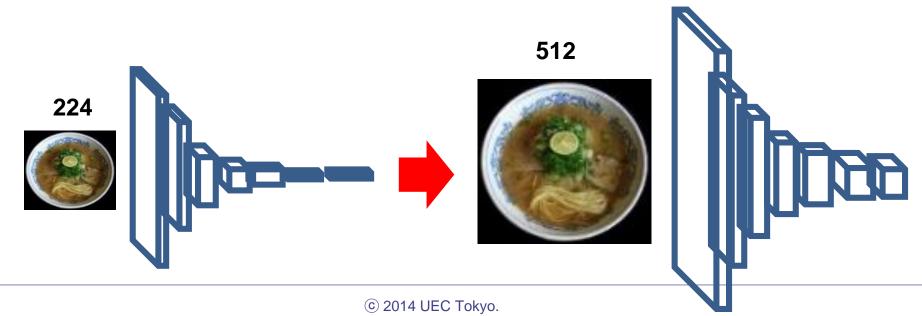
- Previous BP-based segmentation accuracy is poor due to following factors
 - Gradient often become sparse and noisy



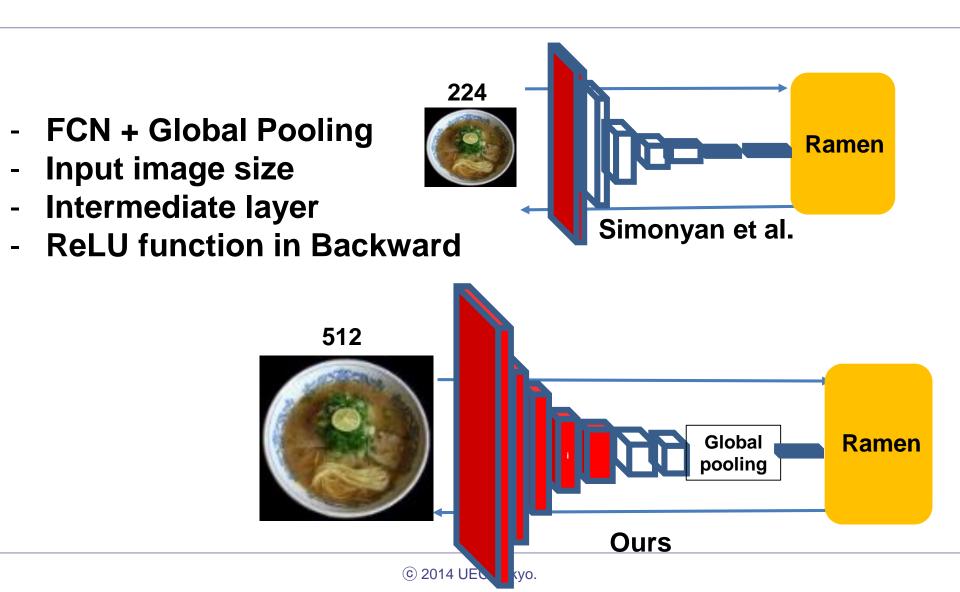


Fully Convolutional Network(FCN)

- Replace Fc layer to Convolution layer
- FCN accept arbitrary input image size
- Output and intermediate feature maps become more dense

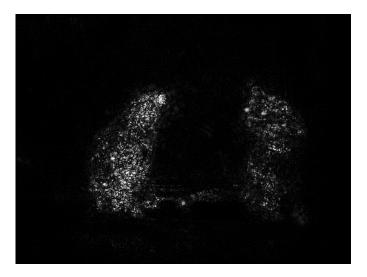


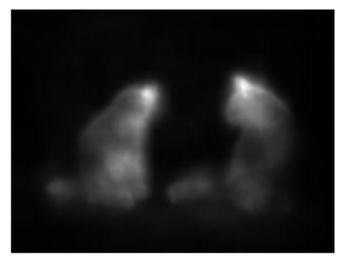
Change points



Change result

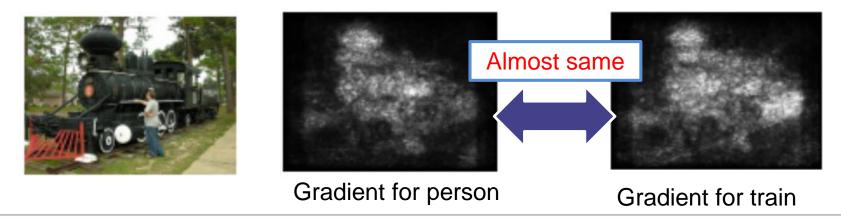
 Saliency maps become more dense and clear





To obtain semantic information

- Gradient loses semantic information
- To solve this problem
 - (1) We combine forward-based feature maps
 - (2) We subtract each class gradient



(1) Combining forward-based coarse object heat maps

- We use BP-based saliency maps to enhance forward-based coarse object heat maps
- Forward-based feature maps
 - Zoom out feature(ZOF)
 - CNN + Super Pixels
 - Train SVM with MIL
 - Fully convolutional networks(FCN)
 - Replace Fc layer to Conv layer
 - Output matrix has semantic inofrmation

(1) Experiment

- Dataset
 - Pascal VOC 2012
 - 21 general object class (including background)
 - 10532 training images
- Training
 - We fine-tune VGG16 FCN model with image-level-label by global pooling
 - We adopt Sigmoid cross entropy loss for multi class label
 - We randomly resize input image to avoid overfitting

(1) Experimental results

• BP-based saliency maps enhance forwardbased feature maps clearly.

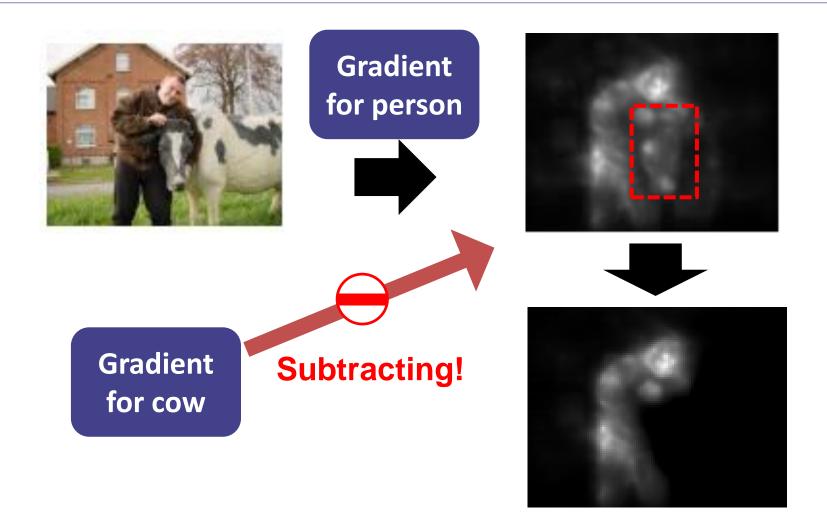
Method	Mean IU
FCN-MIL [ICLR 2015] (FCN only)	24.9
ZOF with GBP (Ours)	37.7
FCN with GBP (Ours)	40.7

Why do gradient maps lose semantic information?

- Large gradient regions mean contributed to recognition of CNN
- Concern
 - Not-target class regions also respond
 - Background regions don't respond
- Does object-ness contribute CNN recognition even though nottarget class regions due to training with general object datasets?

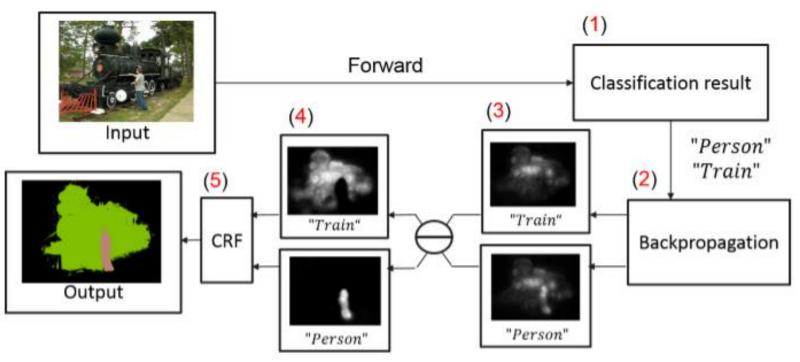
Gradient for person

(2) Subtracting each class gradient



(2) Proposed method

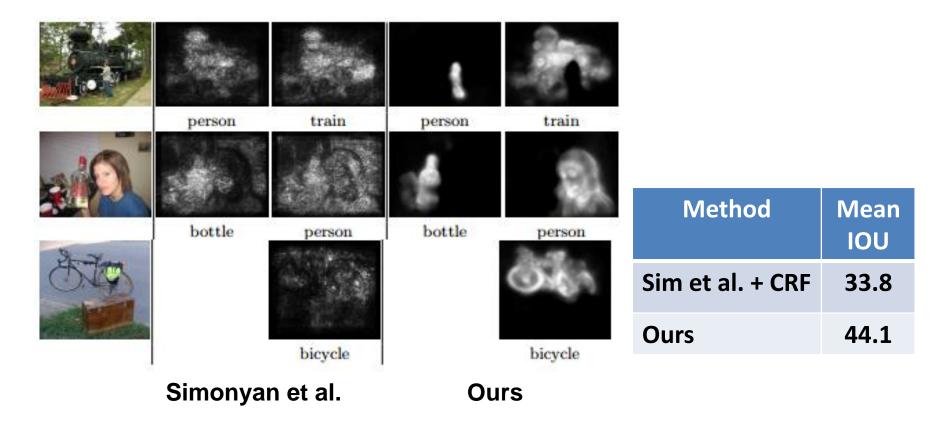
- We achieved semantic segmentation with only gradient maps
- We obtain final regions by Dense CRF



 $[\]textcircled{C}$ 2014 UEC Tokyo.

(2) Compare with base-line method

• Saliency maps and numerical results



(2) Effect of subtraction

- Test for subtraction class numbers
 Note that we need N times backward computation
- Class N = 0 means no subtraction

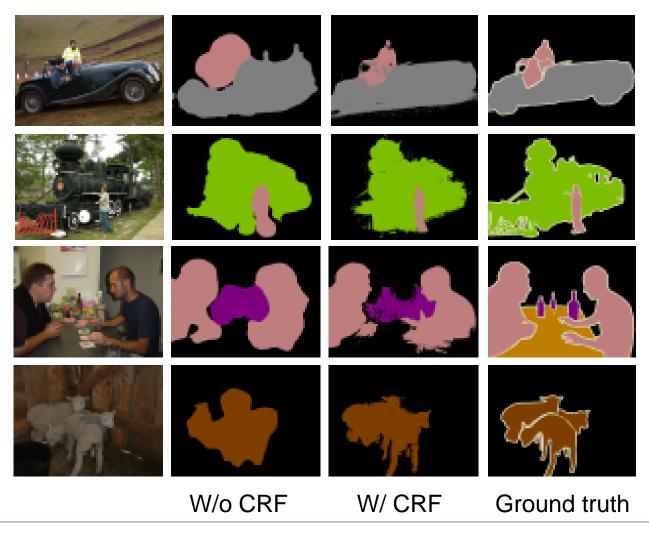
Class N	0	1	2	3	4	5	10
Mean IU	38.2	42.2	43.5	44.1	<u>44.2</u>	44.0	43.7

(2) Comparison with previous works

Method	Mean IOU		
MIL-FCN (iclr 2015)	25.7		
EM-Adapt(iccv 2015)	38.2		
CCNN (iccv 2015)	34.5		
MIL-sppxl (cvpr2015)*	36.6		
MIL-bb (cvpr2015)*	37.8		
MIL-seg (cvpr2015)*	42.0		
Ours w/o CRF	40.5		
Ours w/ CRF	<u>44.1</u>		

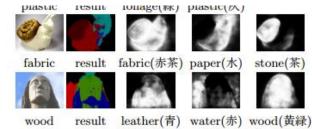
* means that they use additional data

(2) Example of Results



(2) Applications

- We can adapt this method for any CNN models
- Easy implementation!
- GitHub https://github.com/shimoda-uec/dcsm Material images
 Food images



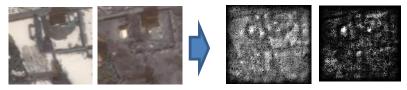
Onomatopoeia images

ごつごつ ぶつぶつ

きらきら

ざらざら

Satelite images (in AIST)



Conclusion

- We adapted visualization method to semantic segmentation method
- We improved a BP-based saliency maps
- We achieved semantic segmentation using only gradient maps by subtracting
- We achieved the state of the art in the weakly supervised semantic segmentation with Pascal VOC 2012.