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(a) Content image (b) Translated with style 1 (c) Translated with style 2 (d) Translated with style 3

Figure 1: Examples ofmaterial translation using different style images (plastic→ paper). Style images 1, 2, and 3were retrieved
using methods based on VGG features with IN (ours), BN, and no normalization, respectively. Note that the image retrieved
by our proposal share less visual characteristics, such as color. However, the synthesized image is more realistic.

ABSTRACT
In this paper, we propose a CNN-feature-based image retrieval
method to find the ideal style image that better translates the ma-
terial of an object. An ideal style image must share semantic in-
formation with the content image, while containing distinctive
characteristics of the desired material. Therefore, we first refine
the search by selecting the most discriminative images from the
target material. Subsequently, our search process focuses on the
object semantics by removing the style information using instance
normalization whitening. Thus, the search is performed using the
normalized CNN features. In order to translate materials to ob-
ject regions, we combine semantic segmentation with neural style
transfer. We segment objects from the content image by using a
weakly supervised segmentation method, and transfer the material
of the retrieved style image to the segmented areas. We demonstrate
quantitatively and qualitatively that by using ideal style images, the
results of the conventional neural style transfer are significantly
improved, overcoming state-of-the-art approaches, such as WCT,
MUNIT, and StarGAN.
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1 INTRODUCTION
Gatys et al. [4] first studied how to use Convolutional Neural Net-
works (CNNs) for applying painting styles on natural images. They
demonstrated that is possible to exploit CNN feature activations to
recombine the content of a given photo and the style of artworks.
This work opened up the field of Neural Style Transfer (NST), which
is the process to render a content image in different styles using
CNNs [7]. NST has led to many applications, such as photo edit-
ing, image colorization, makeup transfer, material translation, and
more [9, 11, 14, 18]. Particularly, material translation aims to change
the material of an object (content) to different material from a sec-
ond image (style), as shown in Figure 1. In this case, the style has
to be selected among several images of the target material. Note
that the shape, color, and even texture of objects from the same
material can be very different from each other (intraclass variance),
as illustrated in each row of Figure 2. Accordingly, the synthesized
image quality totally depends on the selected style image. Figure 1
shows material translation results from a plastic toy image (content)
to a paper material (style) using different style images depicting
paper objects. This example show the importance of the style image
for realistic results. Although the style images clearly show char-
acteristics of the paper material, not all translated results can be
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Figure 2: Example of images from the ten material classes
used in this paper. Each row depicts images from the same
class, from top to bottom: fabric, foliage, glass, leather,
metal, paper, plastic, stone, water, and wood

recognized as a paper toy. This issue can be related to the discrimi-
nation level of the style image (how well the image represent its
class) and the relation between content and style images in terms
of semantic information (how similar they are). Therefore, in order
to select an ideal style image, these two aspects must be addressed.

Taking into account both aspects, we propose an image retrieval
method for improving material translation using NST. Firstly, we
refine the search process by automatically choosing the most dis-
criminative candidate images from each material class available. In
this paper, we employ ten different classes, as illustrated in Figure 2.
Secondly, we propose to remove the style information using in-
stance normalization whitening (IN [17]) from the query (content)
and the refined images (style) of the desired material, since the
style information must be excluded to evaluate better the seman-
tic similarity between them. The final search is performed using
normalized CNN features extracted from the VGG19 network [15].

In order to translate materials to object regions, we combine
semantic segmentation with the conventional NST method [4].
Following the framework proposed by Matsuo et al. [11], we seg-
ment target objects using a weakly supervised segmentation (WSS)
method, and translate the material of the retrieved style image
to the segmented areas. Quantitatively, we evaluate our work on
different metrics including: Inception Score (IS), Frechet Inception

Distance (FID), classification accuracy and segmentation perfor-
mance. Qualitatively, we show examples of synthesized images
that can be evaluated by visual inspection. In summary, our main
contributions are as follows:

• Wepropose a simple yet effective style image retrievalmethod
for improving material translation based on CNN features
with IN whitening.

• We conduct extensive qualitative and quantitative experi-
ments to demonstrate that by selecting ideal style images,
the results of the conventional NST [4] are significantly im-
proved, overcoming state-of-the-art (SOTA) methods such
as WCT [10], StarGAN [3], and MUNIT [6].

2 RELATEDWORK
2.1 Neural Style Transfer
NST methods can be divided in two different groups: image-
optimization-based, and model-optimization-based [7]. The sem-
inal work of Gatys et al. [4] is part of the first group, since the
style transfer is built upon an iterative image optimization in the
pixel space. To enable faster stylization, the second group of works
trains Conv-Deconv-Networks using content and style loss func-
tions to approximate the results in a single forward pass [8]. Some
approaches even aim to train one single model to transfer arbitrary
styles [5, 10]. Huang and Belongie[5] propose the adaptive instance
normalisation (AdaIN) to achieve real-time performance. AdaIN
transfers channel-wise statics between content and style, which are
modulated with affine (trainable) parameters. Concurrently, Li et
al. [10] propose a pair of whitening and coloring transformations
(WCT) to achieve the first style learning-free method. On the other
hand, some GAN-based methods can be included in the model-
optimization-based group. For example, CycleGAN [21] proposes
the cycle consistency loss to achieve an unpaired image-to-image
(I2I) translation. StarGAN [3] extends this work to reach multi-
domain I2I translation by learning I2I mappings from multiple
domains with a single model. Moreover, Huang et al. [6] combine
AdaIN with the adversarial and the perceptual loss functions to
achieve multimodal unsupervised I2I translation (MUNIT). All of
these methods can be applied to material translation. However,
regardless of its clear disadvantages, the conventional NST is con-
sidered as a gold standard due to its visual quality [7]. Therefore,
we build our proposal upon this method. Furthermore, we test with
different SOTA methods to prove this statement.

2.2 Material Translation
To the best of our knowledge, the work of Matsuo et al. [11] is
the only method to achieve this task. They propose to combine
the conventional NST [4] with an early weakly semantic segmen-
tation approach [13]. We build upon this work and extend it in
the following aspects: (1) we propose an automatic image retrieval
rather than manually selecting the material style images; (2) we
evaluate the results with a significantly larger amount of samples;
(3) we train a real-time semantic segmentation model using pseudo
labels generated with a SOTA method for WSS approach. Hence,
our application and evaluation are more efficient and reliable; and
(4) we compare our results with SOTA works of NST and GAN.
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Figure 3: General overview of our proposal for material translation using style image retrieval.

3 METHODOLOGY
Figure 3 illustrates the overview of the complete process for ma-
terial translation focused on a single object (wood→ foliage). As
an input, we take the content image and the label of the target
material. Our main contribution resides in the style image retrieval
process, where we propose to apply IN whitening to remove the
style information and retrieve the ideal style image based on its
semantic similarity with the content image. Subsequently, in the
material translation stage, we apply the conventional NST to syn-
thesize the material of the content image using the retrieved style.
At the same time, we apply semantic segmentation on the content
image to get the foreground mask depicting the material region
that will be translated. Finally, the out is generated by combining
synthesized and the content images using the foreground mask.
In the following subsections, we describe both of the main stages:
Style Image Retrieval and Material Translation.

3.1 Style Image Retrieval
We build our image retrieval process upon two key ideas: search
refinement and style removal from CNN features. As for the first
point, we assume that the ideal style image must reflect essential
characteristics from its class, and have to show apparent differ-
ences among others. Therefore, we first train a CNN model (Incep-
tionV3 [16]) to classify all material images (possible style images),
and we automatically choose the samples with the highest score
rate from each class. Furthermore, we evaluate the material area
that covers the style image. To do so, we divide the area of the ma-
terial by the size of the image, where the material area is provided
by the ground truth of the dataset or automatically detected by a
semantic segmentation model. In resume, the search is refined to
the best-scored images with more extensive material regions from
the target material class. In practice, we set the recognition score
and the area region thresholds to 0.99, so that the number of refined
images drops to about 15 samples per class. Figure 4 shows some
examples of possible ideal style images that satisfy our designed
requirements.

Figure 4: Fixed style images per material, selected from
the best-scored samples and the most extensive material re-
gions. From left to right, and top to bottom: fabric, foliage,
glass, leather, metal, paper, plastic, stone, water, and wood.

Equally important, we employ instance normalization (IN)whiten-
ing for style removal, which was originally proposed to remove
instance-specific contrast information from input images [17]. Fur-
thermore, Huang et al. [6] experimentally proved that the dis-
tance between VGG [15] features of two samples is more domain-
invariant when using IN whitening (experiment details on the supp.
material of [6]). In other words, the features of two images with
the same content and different styles (domain) are closer in the
Euclidean space than those from the same style but different con-
tents. That is what we seek in our style image retrieval process, to
find the most similar style image based on its content (semantic) by
excluding its style information. Therefore, we build the style-free
image retrieval on a VGG19 replacing all batch normalization (BN)
layers with IN. The formal definition of the IN is as follows:

𝑦𝑡𝑖 𝑗𝑘 =
𝑥𝑡𝑖 𝑗𝑘 − 𝜇𝑡𝑖√

𝜎2
𝑖
+ 𝜖
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(1)

where 𝑥 ∈ R𝑇×𝐶×𝑊 ×𝐻 is an input tensor, 𝑥𝑡𝑖 𝑗𝑘 denotes the 𝑡𝑖 𝑗𝑘-th
element, where 𝑘 and 𝑗 span spatial dimensions, 𝑖 corresponds to
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Figure 5: Retrieved results from our proposal using IN (top)
and BN (bottom). From left to right: content image (stone),
results of fabric, foliage and wood materials.

the feature map (output from the current convolutional layer), and
𝑡 is the index of the image in the batch. Note that, different than
the conventional IN layer, we exclude the affine parameters. That’s
why we call this process "whitening."

We L2-normalize the VGG-features from the fc7 layer before
using the Euclidean distance to evaluate the similarity between
the content (query) and the possible style image. Finally, the image
with the lowest distance is retrieved (ideal style image). Note that
we search only within the refined images from the target material,
making the retrieved process very efficient. Figure 5 shows exam-
ples of the retrieved images from different materials by using IN or
BN in the process. As can be seen, the IN version retrieves style-
free images that can be useful for material translation. Meanwhile,
BN retrieves images that show apparent similarities to the content
image (including color and style).

3.2 Material Translation with NST
Inspired by [11], we first obtain pseudo labels with a WSS approach,
then we train a real-time fully supervised semantic segmentation.
Subsequently, the material translation is achieved in three steps:
(1) material translation with NST using the ideal style image; (2)
real-time semantic segmentation of the content image; and (3) style
synthesis to the segmented regions. Each sub-process is briefly
described below.

WSS attacks the problem of annotating training data, since se-
mantic labels are costly to acquire. Particularly, Ahn and Kwak [1]
propose to learn Pixel-level Semantic Affinity (PSA) from class ac-
tivation maps (CAMs) [20] of a multi-label CNN network. Thus,
the entire framework relies only on image-level class labels. On the
other hand, Harmonic Densely Connected Network (HarDNet) [2]
deals with real-time performance, an important issue of semantic
segmentation methods. HarDNet achieves SOTA results by using
harmonic densely connected blocks instead of traditional bottle-
neck blocks [2]. In practice, we use two different datasets to train
PSA and HarDNet, respectively. The first includes a huge amount
of images with only image-level annotations, while the second is a
small dataset that includes pixel-level labels.

Finally, the style transfer is achieved by the conventional NST
method [4], which uses a pre-trained VGG19 network to extract
content and style features. The translated image is optimized by
minimizing the features distance and their Gram matrices (corre-
lation operations). Gatys et al. [4] experimentally proved that the
Gram matrix of CNN activations from different layers efficiently
represents the style of an image. As shown in Figure 3, we first

Table 1: Classification and segmentation evaluation of the
ablation study. "w/o" and "w/ refine" refers to without and
with search refinement, respectively.

w/o refine w/ refine

Method acc mIoU acc mIoU

Baseline - - 0.556 0.4860
VGG19-IN 0.409 0.3967 0.572 0.5062
VGG19-BN 0.291 0.3612 0.543 0.4887
VGG19 0.270 0.3520 0.506 0.4845

translate the whole content image to the retrieved style. Then, we
integrate the material region of the synthesized image and the
background region of the content image into the final output.

4 EXPERIMENTAL RESULTS
4.1 Datasets
In this paper, we use two publicly available datasets: Flickr Ma-
terial Database (FMD) and the Extended-FMD (EFMD). FMD [12]
consists of 10 materials (fabric, foliage, glass, leather, metal, paper,
plastic, stone, water, and wood). Each class contains 100 real-world
images. The samples were selected manually from Flickr, and were
manually annotated at pixel-level. Some examples of this dataset
are shown in Figure 2. EFMD [19] contains the same materials, but
includes 1,000 images per class (10,000 in total). The samples were
picked as close as possible to the FMD images, and only image-level
annotations are provided. The complete EFMD and FMD were used
as training and testing sets, respectively. So that we have 1,000
testing samples for PSA, HarDNet, and InceptionV3 models. We
further fine-tune the HarDNet model on FMD using 900/100 images
as training/testing samples. Finally, we use the same 100 testing
images (10 per class) for all the material translation experiments.
Note that we have initially 90 images per class (FMD only) before
applying our proposed search refinement, and these are reduced to
about 15 samples per class.

4.2 Ablation study
We evaluate the variations of our proposal with classification and
segmentationmetrics: average accuracy (acc) andmean Intersection
over the Union (mIoU). As a baseline, we select one fixed style
image per material, based on the best-scored images and the widest
material regions. Figure 4 shows the selected style images from
each class. Note that these ten images were used to translate all the
testing set. On the other hand, we apply our style image retrieval
only to the refined images (about 15 per class) of the target material,
making this process very efficient. We evaluate the results of our
proposal by replacing the IN whitening (VGG19-IN), with BN layers
(VGG19-BN) and without normalization process (VGG19). We also
evaluate them with (w/ refine) and without search refinement (w/o
refine), which means searching within 90 images per class.

Table 1 presents quantitative results of all variations. We can
observe that the IN whitening significantly improves the results
compared to the vanilla VGG19, and the BN (11 % of accuracy, and
4 % of mIoU). These results concur with our hypothesis that style
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Figure 6: Classification accuracy per-material class using
our VGG19-IN proposal.

Figure 7: Classification accuracy (%) of translations fromma-
terial A (rows) to material B (columns).

information must be removed from VGG features to retrieve ideal
style images. Besides, the search refinement plays an essential role
in the retrieving process. It boosts the material translation per-
formance of our VGG19-IN by more than 15 %. Surprisingly, the
fixed style images perform comparable with the retrieving-based
approaches, and even outperform the BN and vanilla VGG19 varia-
tions. This issue suggests, that there is still a place for improvement
in the retrieving process (to find better style images).

We also evaluate per-material performance from our proposal.
Figure 6 shows the average accuracy of content (original material
to all possible classes) and style (individual translated material from
all content styles) materials. As expected, not all materials show
the same level of realism after the translation process. Interesting
results are those from glass and water. The former seems to be easy
to synthesize but challenging to translate, while the latter presents
the opposite situation. In resume, water and leather materials are
challenging to synthesize, while glass and wood are certainly easier.
Furthermore, in Figure 7, we evaluate the translation performance
from each pair of materials (A→ B), where rows and columns, repre-
sent original (content) and translated (style) materials, respectively.
Stone to leather, and leather to water are challenging to translate,
while stone to wood, and wood to plastic are more accessible.

Figure 8 illustrates quantitative results of our VGG19-IN feature-
based approach. We can see that all retrieved style images do not
share style similarities with the content images (due to the IN
whitening). Besides, some of them show similar features, such as in
the first example (from wood), the angular shape of the tooth-like
part of the object with similar patterns on the foliage image.

(a) Translation from wood material

(b) Translation from foliage material

Figure 8: Translated results using our VGG19-IN proposal.
From left to right, and top to bottom: content image, results
of fabric, foliage, glass, leather, metal, stone, and water.

Table 2: Quantitative results of all evaluated methods

Method Acc ↑ mIoU ↑ IS ↑ FID ↓
NST-Base 0.556 0.4860 4.161 66.54

NST-IN (ours) 0.572 0.5062 4.181 61.30
WCT-Base 0.349 0.4133 3.518 65.61
WCT-IN 0.353 0.4079 3.604 64.53

MUNIT-Base 0.343 0.3872 3.475 65.60
MUNIT-IN 0.373 0.3995 3.523 61.52
StarGAN 0.113 0.2738 2.673 103.8

4.3 Comparision with previous works
We compare our conventional NST-based approach with a real-time
learning-free NST method (WCT), and two SOTA GAN approaches:
StarGAN [3], and MUNIT [6]. We have trained both models with
the EFMD dataset (900/100 images as training/testing samples)
using the default parameters provided in their open-source codes.
Note that, to get optimum results, we train one MUNIT model per
combination of different materials (45 models for ten classes). For
WCT, we use the pre-trained model provided by the authors [10].

We evaluated all methods using GAN metrics, i.e., Inception
Score (IS), and the Frechet Inception Distance (FID). Both were cal-
culated with our InceptionV3 model (fine-tuned on the ten classes).
We present results of each method using fixed style images (-Base),
and retrieved images by our VGG19-IN process (-IN).

Table 2 shows the results from all models and tests. Our proposal
improves the translated images over the fixed styles for all meth-
ods. Besides, the our proposal with conventional NST approach
significantly overcomes theWCT and GAN-based methods. Surpris-
ingly, StarGAN performs poorly on the task of material translation.
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(a) Translation from foliage to stone

(b) Translation from wood to foliage

Figure 9: Qualitative results from all evaluated methods.
From left to right, and top to bottom: content image (red),
results using NST-Base, NST-IN (ours), WCT-Base, WCT-IN,
MUNIT-Base, MUNIT-IN, and StarGAN.

This issue might be due to the challenge of generalizing ten mate-
rial classes from significantly different objects in a single model.
Figure 9 shows qualitative results from all models (our approach
is highlighted in blue). Each synthesized image also includes its
accuracy score related to the target material. We can see that syn-
thesized images from the conventional NST, and WCT-IN were
correctly classified. In the first example, our approach presents
results with realistic shape and texture, translating each petal to
individual stones while keeping the flower shape. On the other
hand, MUNIT results do not directly rely on the chosen style image,
and fail to represent essential characteristics of the stone material.
As for the second example, most of the translated images correctly
synthesize foliage from wood material. However, we can clearly see
that the result of our proposal preserves the semantic information
from the original wooden object while showing essential charac-
teristics from foliage material. Besides, our synthesized image is
recognized with the highest score by the InceptionV3 model.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced an image retrieval method to find the
ideal style image that helps to translate the material of an object.
We build our approach on VGG19 features whitened with instance
normalization to remove the style information. Our results show
that by excluding the style in the search process, the translated
results are significantly better. We were able to synthesize images
using the conventional NST method combined with a real-time
semantic segmentation approach. Besides, our end-to-end process
overcomes SOTA approaches, such as WCT, MUNIT and StarGAN.

As future work, we will analyze different options for feature
extraction and for removing the style information. We also would
like to achieve real-time performance with faster NST methods.
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